# Effective polydisk nullstellensatz : the zero-dimensional case 

## Yacine Bouzidi*

* INRIA Lille - Nord Europe, NON-A project
* yacine.bouzidi@inria.fr
supported by the ANR MSDOS

$$
\text { January 20, } 2017
$$

Joint work with T. Cluzeau, G. Moroz and A. Quadrat
(centralelille

## Nullstellensatz theorem

- David Hilbert 1890
- $I=\left\langle p_{1}, \ldots, p_{m}\right\rangle$ is a polynomial ideal in $\mathbb{Q}\left[z_{1}, \ldots, z_{n}\right]$ and its variety

$$
V(I)=\left\{z \in \mathbb{C}^{n} \mid p_{1}(z)=\cdots=p_{m}(z)=0\right\}
$$

- Nullstellensatz theorem (weak): (i) and (ii) are equivalent
(1) $V_{\mathbb{C}}(I)=\emptyset$
(2) $\exists u_{1}, \ldots, u_{m} \in \mathbb{Q}\left[z_{1}, \ldots, z_{n}\right]$ such that

$$
\sum_{i=1}^{m} u_{i} p_{i}=1
$$

## Polydisk nullstellensatz theorem

- The closed unit polydisk

$$
\overline{\mathbb{U}}^{n}:=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}\left|\forall i=1, \ldots, n,\left|z_{i}\right| \leq 1\right\} .\right.
$$

- Polydisk nullstellensatz theorem : (i) and (ii) are equivalent
(1) $V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^{n}=\emptyset$
(2) $\exists s, u_{1}, \ldots, u_{m} \in \mathbb{Q}\left[z_{1}, \ldots, z_{n}\right]$ such that $s=\sum_{i=1}^{m} u_{i} p_{i}$ and

$$
V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^{n}=\emptyset
$$

## Effective polydisk nullstellensatz

- Given an ideal $I \subset \mathbb{Q}\left[z_{1}, \ldots, z_{n}\right]$, two problems stem from the previous theorem:
(1) Check whether $V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^{n}=\emptyset$
(2) Compute $s \in I$ and $u_{1}, \ldots, u_{m}$ such that

$$
s=\sum_{i=1}^{m} u_{i} p_{i} \quad \text { and } \quad V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^{n}=\emptyset
$$

## Motivation : stabilisation of $n$-D systems

- $A:=\mathbb{Q}\left[z_{1}, \ldots, z_{n}\right]$ the polynomial ring
- Every $n$-D system $P$ can be represented by a matrix

$$
R \in A^{q \times(q+r)}
$$

- Theorem: P is internally stabilizable if the ideal / generated by the reduced $q \times q$ minors of $R$ is devoid from zeros in $\overline{\mathbb{U}}^{n}$.
- A stabilizing control can be constructed by computing $s \in I$ :

$$
V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^{n}=\emptyset
$$

## Existing work

(1)Checking $V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^{n}=\emptyset$

- $z_{k}=x_{k}+i y_{k}$ and $x_{k}^{2}-y_{k}^{2}-1 \leq 0 \rightsquigarrow$ emptiness of semi-algebraic sets : effective but not efficient
- The case $I=\langle p\rangle$ : [B. Quadrat and Rouillier, 15]
(2) Computation of the polynomial $s \in I$ with $V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^{n}=\emptyset$
- [Berenstein and Struppa 86] : rational functions
- [Bridges et al. 03] : constructive proof but not effective
- [Xu et. al 94] : Zero-dimensional ideal, also not effective


## The radical zero dimensional case

- We restrict the study to zero-dimensional ideal:

$$
\sharp V_{\mathbb{C}}(I)<\infty
$$

- We also suppose without loss of generality that I is a radical ideal:

$$
I=\sqrt{I}
$$

## Intersection with the polydisk

- Goal: For a given zero-dimensional ideal I, check that

$$
V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^{n}=\emptyset
$$

- Tool: Univariate representation of the complex zeros of I
$\rightsquigarrow$ A one-to-one mapping between the zeros of $I$ and the roots of a univariate polynomial

$$
\begin{array}{cl}
V(I) & \longrightarrow V(f)=\{t \in \mathbb{C} \mid f(t)=0\} \\
z=\left(z_{1}, \ldots, z_{n}\right) & \longmapsto t=a_{1} z_{1}+\cdots+a_{n} z_{n}
\end{array}
$$

and

$$
\begin{aligned}
V(f) & \longrightarrow V(I) \\
t & \longmapsto\left(g_{z_{1}}(t), \ldots, g_{z_{n}}(t)\right)
\end{aligned}
$$

## Intersection with the polydisk: the algorithm

- Compute a Univariate Representation of $\left\langle p_{1}, \ldots, p_{m}\right\rangle$

$$
\left\{f(t)=0, z_{1}=g_{z_{1}}(t), \ldots, z_{n}=g_{z_{n}}(t)\right\}
$$

- Isolation into pair of intervals: $z_{k}=\left[a_{k, 1}, a_{k, 2}\right]+i\left[b_{k, 1}, b_{k, 2}\right]$
- Compute the sign of $\left[a_{k, 1}, a_{k, 2}\right]^{2}+\left[b_{k, 1}, b_{k, 2}\right]^{2}-1$
- What if some coordinates are on the unit circle ?
$\rightsquigarrow$ Cannot conclude
- Need to identify these coordinates or at least to count them
- For each $z_{i}$, this can be read on the resultant of $f(t)$ and $z_{i}-g_{z_{i}}(t)$ with respect to $t \rightsquigarrow \mathbf{e} . \mathbf{g}$ : via Möbius transform.


## Polydisk nullstellensatz theorem

- Goal: A constructive proof for the following theorem


## Theorem

Let $I:=\left\langle p_{1}, \ldots, p_{m}\right\rangle$ be a zero-dimensional ideal such that

$$
V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^{n}=\emptyset .
$$

Then, there exists a polynomial $s$ as well as $u_{1}, \ldots, u_{m} \in$ $\mathbb{Q}\left[z_{1}, \ldots, z_{n}\right]$ such that

$$
s=\sum_{i=1}^{m} u_{i} p_{i} \quad \text { and } \quad V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^{n}=\emptyset
$$

## The existing approach: [Xu et al. 94]

- For each $z_{i}$, compute the elimination polynomial

$$
\left\langle R_{z_{i}}\right\rangle=I \cap \mathbb{Q}\left[z_{i}\right]
$$

- Factorize each $R_{z_{i}}=R_{s, z_{i}} \times R_{u, z_{i}}$ such that

$$
R_{s, z_{i}}(\alpha)=0 \Longrightarrow|\alpha|>1 \quad \text { and } \quad R_{u, z_{i}}(\beta)=0 \Longrightarrow|\beta| \leq 1
$$

- Construct the polynomial $s=\prod_{i=1}^{n} R_{s, z_{i}}$
- $s$ vanishes at all the zeros of $I \Rightarrow$ one can compute polynomials $u_{1}, \ldots, u_{m} \in \mathbb{Q}\left[z_{1}, \ldots, z_{n}\right]$ s.t.

$$
s=\sum_{i=1}^{m} u_{i} p_{i}
$$

- Problem: Not effective
$R\left(z_{i}\right)$ can be irreducible $\rightsquigarrow$ factorization in $\mathbb{C}\left[z_{i}\right]$ !


## Our approach

- Idea: Apply the previous approach on a system whose solutions are rational approximations of the solutions of I
(1) Compute rational approximations of the solutions of $I$
(2) Compute the corresponding polynomials $R_{s, z_{i}}$ in $\mathbb{Q}\left[z_{i}\right]$
(3) Compute the cofactors $u_{i}$ in the nullstellensatz relation
(4) Use these cofactors to deduce the polynomial s
- Start with a Univariate Representation of $I=\left\langle p_{1}, \ldots, p_{m}\right\rangle$
- Let $I_{r}:=\left\langle f, z_{1}-g_{z_{1}}, \ldots, z_{n}-g_{z_{n}}\right\rangle \subset \mathbb{Q}\left[t, z_{1}, \ldots, z_{n}\right]$


## Our approach

- Compute $\widetilde{f}(t)=\prod_{k=1}^{n}\left(t-\widetilde{\gamma}_{k}\right)$ where $\widetilde{\gamma}_{k}$ are rational approximations of the roots of $f$
- For each $z_{i}$ compute $\widetilde{R}_{s, z_{i}}=\Pi\left(z_{i}-g_{z_{i}}\left(\widetilde{\gamma}_{k}\right)\right)$ such that $\left|g_{z_{i}}\left(\widetilde{\gamma}_{k}\right)\right|>1$
- All the $\widetilde{R}_{s, z_{i}}$ are now in $\mathbb{Q}\left[z_{i}\right]$
- Compute the product of $\widetilde{R}_{s, z_{i}}, \widetilde{s}=\prod_{i=1}^{n} \widetilde{R}_{s, z_{i}}$
$\Longrightarrow \widetilde{s} \in\left\langle\tilde{f}, z_{1}-g_{z_{1}}, \ldots, z_{n}-g_{z_{n}}\right\rangle$,
$\Longrightarrow \exists \widetilde{u}_{0}, \widetilde{u}_{1}, \ldots, \widetilde{u}_{n} \in \mathbb{Q}\left[t, z_{1}, \ldots, z_{n}\right]$ such that

$$
\widetilde{s}=\widetilde{u_{0}} \widetilde{f}+\sum_{i=1}^{n} \widetilde{u}_{i}\left(z_{i}-g_{z_{i}}\right)
$$

## Main result

- Let $\epsilon>0$ be such that $\max _{k \in\{1, \ldots, n\}}\left(\left|\gamma_{k}-\widetilde{\gamma}_{k}\right|\right)<\epsilon$
- $\widetilde{u}_{i, \epsilon}, \widetilde{f}_{\epsilon}$ and $\widetilde{s}_{\epsilon}$ are the previous approximated polynomials wrt $\epsilon$


## Theorem

(1) The polynomial $s=\widetilde{s}_{\epsilon}-\widetilde{u}_{0, \epsilon}\left(\widetilde{f}_{\epsilon}-f\right)$ belongs to the ideal $I_{r}$.
(2) There exists $\epsilon>0$ such that $s\left(\sum_{i=1}^{n} a_{i} z_{i}, z_{1}, \ldots, z_{n}\right)$ has no zeros in the $\overline{\mathbb{U}}^{n}$.

Algorithm: For successive small $\epsilon$

- Compute the polynomial $s$
- Check that $V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^{n}=\emptyset$ [B. et al. 15]


## Sketch of proof

(1) $s=\tilde{s}_{\epsilon}-\tilde{u}_{0, \epsilon}\left(\tilde{f}_{\epsilon}-f\right)=\sum_{i=1}^{n} \tilde{u}_{i, \epsilon}\left(z_{i}-g_{z_{i}}\right)+\tilde{u}_{0, \epsilon} f$, so that $s$ vanishes on $V\left(I_{r}\right)$, which implies $s \in I_{r}$
(2) We prove that $\forall \lambda \in \overline{\mathbb{U}}^{n},|s(\lambda)|>0$

On the one hand,

$$
\forall \lambda \in \overline{\mathbb{U}}^{n},\left|\tilde{u}_{0, \epsilon}(\lambda)\left(\tilde{f}_{\epsilon}(\lambda)-f(\lambda)\right)\right| \leq \epsilon \rho \delta
$$

where $\rho$ (resp., $\delta$ ) does not depend on $\epsilon$.
On the other hand,

$$
\forall \lambda \in \overline{\mathbb{U}}^{n},\left|\tilde{s}_{\epsilon}(\lambda)\right| \geq(m-\epsilon)^{d} .
$$

$\Rightarrow$ for sufficiently small $\epsilon$,

$$
\begin{aligned}
\forall \lambda \in \overline{\mathbb{U}}^{n},|s(\lambda)| & \geq\left|\tilde{s}_{\epsilon}(\lambda)\right|-\left|\tilde{u}_{0, \epsilon}(\lambda)\left(\tilde{f}_{\epsilon}(\lambda)-f(\lambda)\right)\right| \\
& \geq(m-\epsilon)^{d}-\epsilon \rho \delta \\
& >0 .
\end{aligned}
$$

## Example

- $I=\left\langle p_{1}, p_{2}\right\rangle$ where $p_{1}=z_{1}^{2}-2 z_{1}-2$ and $p_{2}=z_{1}+z_{2}-2$
- Both $p_{1}$ and $p_{2}$ have zeros inside $\overline{\mathbb{U}}^{2}$
- $V(I):\{(1-\sqrt{3}, 1+\sqrt{3}),(1+\sqrt{3}, 1-\sqrt{3})\} \rightsquigarrow V(I) \cap \overline{\mathbb{U}}^{2}=\emptyset$
- The elimination polynomials $z_{i}^{2}-2 z_{i}-2$ are irreducible in $\mathbb{Q}\left[z_{i}\right]$
- A univariate representation of $l$ is given by

$$
f(t):=t^{2}-2 t-2=0, \quad z_{1}=t, \quad z_{2}=2-t
$$

The roots of $f(t)$ are $\gamma_{1} \approx-0.73$ and $\gamma_{2} \approx 2.73$
Set $\epsilon=\frac{1}{2}$, we get the approximate roots (in $\mathbb{Q}$ ) $\widetilde{\gamma}_{1}=-\frac{1}{2}$ and $\widetilde{\gamma}_{2}=3$ which yields the approximated polynomials

$$
\widetilde{f}(t)=\left(t+\frac{1}{2}\right)(t-3), \quad \widetilde{s}\left(z_{1}, z_{2}\right)=\left(z_{1}-3\right)\left(z_{2}-\frac{5}{2}\right)
$$

## Example (next)

From the previous polynomials, we obtain

$$
u_{0}(t)=-1, \quad(\tilde{f}-f)(t)=-\frac{1}{2} t+\frac{1}{2} .
$$

Finally, after substituting $t=z_{1}$ in $\tilde{f}-f$, we get:

$$
s\left(z_{1}, z_{2}\right)=z_{1} z_{2}-3 z_{1}-3 z_{2}+8
$$



$$
\begin{array}{|c|c|}
\hline \bullet \text { Sohtions } & \cdots \cdots \\
\text { Exact factorization } \\
- & \text { Approximate factorization } \\
\hline & \text { Stable curve } \\
\hline
\end{array}
$$

## Conclusion and futur work

- Complete Maple implementation
- Investigate the size of the output wrt the distance of the solutions from the polydisk
- Tackle the general polydisk nullstellensatz problem $\rightsquigarrow$ Ideals with arbitrary dimension.
- Small part of a larger module theory over the ring of rational fractions with no poles in the unit polydisk

$$
A:=\left\{\left.\frac{r}{s} \right\rvert\, 0 \neq s, r \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right], V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^{n}=\emptyset\right\}
$$

$V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^{n}=\emptyset \Longrightarrow$ projectivity
[Deligne thm]: Projectivity $\Longrightarrow$ freeness (no constructive proof)

## Conclusion and futur work

- Complete Maple implementation
- Investigate the size of the output wrt the distance of the solutions from the polydisk
- Tackle the general polydisk nullstellensatz problem $\rightsquigarrow$ Ideals with arbitrary dimension.
- Small part of a larger module theory over the ring of rational fractions with no poles in the unit polydisk

$$
A:=\left\{\left.\frac{r}{s} \right\rvert\, 0 \neq s, r \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right], V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^{n}=\emptyset\right\}
$$

$V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^{n}=\emptyset \Longrightarrow$ projectivity
[Deligne thm]: Projectivity $\Longrightarrow$ freeness (no constructive proof)

## Thank you

## Extension to systems with arbitrary dimension

