Effective polydisk nullstellensatz : the zero-dimensional case

Yacine Bouzidi*

* INRIA Lille - Nord Europe, NON-A project * yacine.bouzidi@inria.fr supported by the ANR MSDOS

January 20, 2017

Joint work with T. Cluzeau, G. Moroz and A. Quadrat

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

Nullstellensatz theorem

- David Hilbert 1890
- $I = \langle p_1, \dots, p_m \rangle$ is a polynomial ideal in $\mathbb{Q}[z_1, \dots, z_n]$ and its variety

$$V(I) = \{z \in \mathbb{C}^n \mid p_1(z) = \cdots = p_m(z) = 0\}$$

• Nullstellensatz theorem (weak): (i) and (ii) are equivalent

•
$$V_{\mathbb{C}}(I) = \emptyset$$

• $\exists u_1, \dots, u_m \in \mathbb{Q}[z_1, \dots, z_n]$ such that \underline{m}

$$\sum_{i=1} u_i p_i = 1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Polydisk nullstellensatz theorem

• The closed unit polydisk

n

$$\overline{\mathbb{U}}^n := \{ z = (z_1, \ldots, z_n) \in \mathbb{C}^n \mid \forall i = 1, \ldots, n, |z_i| \le 1 \}.$$

• Polydisk nullstellensatz theorem : (i) and (ii) are equivalent

•
$$V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}'' = \emptyset$$

• $\exists s, u_1, \dots, u_m \in \mathbb{Q}[z_1, \dots, z_n]$ such that $s = \sum_{i=1}^m u_i p_i$ and
 $V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^n = \emptyset$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Given an ideal $I \subset \mathbb{Q}[z_1, \dots, z_n]$, two problems stem from the previous theorem:

• Check whether
$$V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^n = \emptyset$$

2 Compute $s \in I$ and u_1, \ldots, u_m such that

$$s = \sum_{i=1}^{m} u_i p_i$$
 and $V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^n = \emptyset$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $A := \mathbb{Q}[z_1, \ldots, z_n]$ the polynomial ring
- Every *n*-D system *P* can be represented by a matrix

 $R \in A^{q \times (q+r)}$

• Theorem: P is internally stabilizable if the ideal *I* generated by the reduced $q \times q$ minors of *R* is devoid from zeros in $\overline{\mathbb{U}}^n$.

• A stabilizing control can be constructed by computing $s \in I$:

$$V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^n = \emptyset$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Existing work

- Checking $V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^n = \emptyset$
- $z_k = x_k + i y_k$ and $x_k^2 y_k^2 1 \le 0 \rightsquigarrow$ emptiness of semi-algebraic sets : effective but not efficient
- The case $I = \langle p \rangle$: [B. Quadrat and Rouillier, 15]
 - 2 Computation of the polynomial $s \in I$ with $V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^n = \emptyset$
- [Berenstein and Struppa 86] : rational functions
- [Bridges et al. 03] : constructive proof but not effective
- [Xu et. al 94] : Zero-dimensional ideal, also not effective

• We restrict the study to zero-dimensional ideal:

$\sharp V_{\mathbb{C}}(I) < \infty$

• We also suppose without loss of generality that *I* is a radical ideal:

 $I = \sqrt{I}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Goal: For a given zero-dimensional ideal I, check that

$$V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^n = \emptyset$$

Tool: Univariate representation of the complex zeros of I

→ A one-to-one mapping between the zeros of *I* and the roots of a univariate polynomial

$$V(I) \longrightarrow V(f) = \{t \in \mathbb{C} \mid f(t) = 0\}$$

$$z = (z_1, \dots, z_n) \longmapsto t = a_1 z_1 + \dots + a_n z_n,$$

and

$$egin{array}{rcl} V(f) &\longrightarrow & V(I) \ t &\longmapsto & (g_{z_1}(t),\ldots,g_{z_n}(t)), \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Intersection with the polydisk: the algorithm

• Compute a Univariate Representation of $\langle p_1, \ldots, p_m \rangle$

$$\{f(t) = 0, z_1 = g_{z_1}(t), \dots, z_n = g_{z_n}(t)\}$$

- Isolation into pair of intervals: $z_k = [a_{k,1}, a_{k,2}] + i[b_{k,1}, b_{k,2}]$
- Compute the sign of $[a_{k,1}, a_{k,2}]^2 + [b_{k,1}, b_{k,2}]^2 1$
- What if some coordinates are on the unit circle ?

~ Cannot conclude

- Need to identify these coordinates or at least to count them
- For each z_i , this can be read on the resultant of f(t) and $z_i g_{z_i}(t)$ with respect to $t \rightsquigarrow e.g$: via Möbius transform.

Polydisk nullstellensatz theorem

Goal: A constructive proof for the following theorem

Theorem

Let $I := \langle p_1, \dots, p_m \rangle$ be a zero-dimensional ideal such that

 $V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^n = \emptyset.$

Then, there exists a polynomial s as well as $u_1, \ldots, u_m \in \mathbb{Q}[z_1, \ldots, z_n]$ such that

$$s = \sum_{i=1}^{m} u_i p_i$$
 and $V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^n = \emptyset$

The existing approach: [Xu et al. 94]

• For each z_i, compute the elimination polynomial

 $\langle R_{z_i} \rangle = I \cap \mathbb{Q}[z_i]$

• Factorize each $R_{z_i} = R_{s,z_i} \times R_{u,z_i}$ such that

 $R_{s,z_i}(lpha) = 0 \implies |lpha| > 1 \text{ and } R_{u,z_i}(eta) = 0 \implies |eta| \le 1$

- Construct the polynomial $s = \prod_{i=1}^{n} R_{s, z_i}$
- *s* vanishes at all the zeros of $I \Rightarrow$ one can compute polynomials $u_1, \ldots, u_m \in \mathbb{Q}[z_1, \ldots, z_n]$ s.t.

$$s = \sum_{i=1}^m u_i p_i$$

Problem: Not effective

 $R(z_i)$ can be irreducible \rightsquigarrow factorization in $\mathbb{C}[z_i]$!

• Idea: Apply the previous approach on a system whose solutions are rational approximations of the solutions of *I*

- Compute rational approximations of the solutions of I
- **②** Compute the corresponding polynomials R_{s,z_i} in $\mathbb{Q}[z_i]$
- Compute the cofactors u_i in the nullstellensatz relation
- Use these cofactors to deduce the polynomial s
- Start with a Univariate Representation of $I = \langle p_1, \dots, p_m \rangle$

• Let $I_r := \langle f, z_1 - g_{z_1}, \dots, z_n - g_{z_n} \rangle \subset \mathbb{Q}[t, z_1, \dots, z_n]$

Our approach

• Compute $\tilde{f}(t) = \prod_{k=1}^{n} (t - \tilde{\gamma}_k)$ where $\tilde{\gamma}_k$ are rational approximations of the roots of f

• For each z_i compute $\widetilde{R}_{s,z_i} = \prod (z_i - g_{z_i}(\widetilde{\gamma}_k))$ such that $|g_{z_i}(\widetilde{\gamma}_k)| > 1$

- All the \widetilde{R}_{s,z_i} are now in $\mathbb{Q}[z_i]$
- Compute the product of $\widetilde{R}_{s,z_i},\,\widetilde{s}=\prod_{i=1}^n\widetilde{R}_{s,z_i}$

$$\implies \widetilde{s} \in \langle \widetilde{f}, z_1 - g_{z_1}, \dots, z_n - g_{z_n} \rangle,$$
$$\implies \exists \ \widetilde{u}_0, \widetilde{u}_1, \dots, \widetilde{u}_n \in \mathbb{Q}[t, z_1, \dots, z_n] \text{ such that}$$

$$\widetilde{s} = \widetilde{u_0}\widetilde{f} + \sum_{i=1}^n \widetilde{u_i}(z_i - g_{z_i})$$

(日) (日) (日) (日) (日) (日) (日)

Main result

- Let $\epsilon > 0$ be such that $\max_{k \in \{1,...,n\}} (|\gamma_k \widetilde{\gamma}_k|) < \epsilon$
- $\widetilde{u}_{i,\epsilon}, \widetilde{f}_{\epsilon}$ and \widetilde{s}_{ϵ} are the previous approximated polynomials wrt ϵ

Theorem

- The polynomial $s = \tilde{s}_{\epsilon} \tilde{u}_{0,\epsilon} (\tilde{f}_{\epsilon} f)$ belongs to the ideal I_r .
- 2 There exists $\epsilon > 0$ such that $s(\sum_{i=1}^{n} a_i z_i, z_1, \dots, z_n)$ has no zeros in the $\overline{\mathbb{U}}^n$.

Algorithm: For successive small ϵ

- Compute the polynomial s
- Check that $V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^n = \emptyset$ [B. et al. 15]

Sketch of proof

•
$$s = \tilde{s}_{\epsilon} - \tilde{u}_{0,\epsilon} (\tilde{f}_{\epsilon} - f) = \sum_{i=1}^{n} \tilde{u}_{i,\epsilon} (z_i - g_{z_i}) + \tilde{u}_{0,\epsilon} f$$
, so that s vanishes on $V(I_r)$, which implies $s \in I_r$

2 We prove that
$$\forall \lambda \in \overline{\mathbb{U}}^n$$
, $|s(\lambda)| > 0$

On the one hand,

$$\forall \lambda \in \overline{\mathbb{U}}^n, |\tilde{\boldsymbol{\mathcal{U}}}_{0,\epsilon}(\lambda)(\tilde{f}_{\epsilon}(\lambda) - f(\lambda))| \leq \epsilon \, \rho \, \delta$$

where ρ (resp., δ) does not depend on ϵ .

On the other hand,

$$\forall \ \lambda \in \overline{\mathbb{U}}^n, \ |\tilde{\boldsymbol{s}}_{\epsilon}(\lambda)| \geq (\boldsymbol{m} - \epsilon)^d.$$

 \Rightarrow for sufficiently small ϵ ,

$$\begin{aligned} \forall \lambda \in \overline{\mathbb{U}}^n, \ |\boldsymbol{s}(\lambda)| &\geq |\tilde{\boldsymbol{s}}_{\epsilon}(\lambda)| - |\tilde{\boldsymbol{u}}_{0,\epsilon}(\lambda)(\tilde{f}_{\epsilon}(\lambda) - f(\lambda))| \\ &\geq (m - \epsilon)^d - \epsilon \, \rho \, \delta \\ &> 0. \end{aligned}$$

Example

- $I = \langle p_1, p_2 \rangle$ where $p_1 = z_1^2 2 z_1 2$ and $p_2 = z_1 + z_2 2$
- Both p_1 and p_2 have zeros inside $\overline{\mathbb{U}}^2$
- $V(I): \{(1-\sqrt{3},1+\sqrt{3}),(1+\sqrt{3},1-\sqrt{3})\} \rightsquigarrow V(I) \cap \overline{\mathbb{U}}^2 = \emptyset$
- The elimination polynomials $z_i^2 2 z_i 2$ are irreducible in $\mathbb{Q}[z_i]$
- A univariate representation of / is given by

$$f(t) := t^2 - 2t - 2 = 0, \quad z_1 = t, \quad z_2 = 2 - t.$$

The roots of f(t) are $\gamma_1 \approx -0.73$ and $\gamma_2 \approx 2.73$

Set $\epsilon = \frac{1}{2}$, we get the approximate roots (in \mathbb{Q}) $\tilde{\gamma}_1 = -\frac{1}{2}$ and $\tilde{\gamma}_2 = 3$ which yields the approximated polynomials

$$\widetilde{f}(t) = \left(t+\frac{1}{2}\right) (t-3), \quad \widetilde{s}(z_1,z_2) = (z_1-3) \left(z_2-\frac{5}{2}\right)$$

・ロト・日本・日本・日本・日本

Example (next)

From the previous polynomials, we obtain

$$u_0(t) = -1, \quad (\widetilde{f} - f)(t) = -\frac{1}{2}t + \frac{1}{2}.$$

Finally, after substituting $t = z_1$ in $\tilde{f} - f$, we get:

Conclusion and futur work

- Complete Maple implementation
- Investigate the size of the output wrt the distance of the solutions from the polydisk
- Tackle the general polydisk nullstellensatz problem \rightsquigarrow Ideals with arbitrary dimension.

• Small part of a larger module theory over the ring of rational fractions with no poles in the unit polydisk

$$A := \{ \frac{r}{s} \mid 0 \neq s, r \in \mathbb{R}[z_1, \ldots, z_n], V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^n = \emptyset \}$$

 $V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^n = \emptyset \implies$ projectivity

[Deligne thm]: Projectivity \implies freeness (no constructive proof)

(日) (日) (日) (日) (日) (日) (日)

Conclusion and futur work

- Complete Maple implementation
- Investigate the size of the output wrt the distance of the solutions from the polydisk
- Tackle the general polydisk nullstellensatz problem \rightsquigarrow Ideals with arbitrary dimension.

• Small part of a larger module theory over the ring of rational fractions with no poles in the unit polydisk

$$A := \{ \frac{r}{s} \mid 0 \neq s, r \in \mathbb{R}[z_1, \ldots, z_n], V_{\mathbb{C}}(s) \cap \overline{\mathbb{U}}^n = \emptyset \}$$

 $V_{\mathbb{C}}(I) \cap \overline{\mathbb{U}}^n = \emptyset \implies$ projectivity

[Deligne thm]: Projectivity \implies freeness (no constructive proof)

Thank you

・ロト・日本・日本・日本・日本

Extension to systems with arbitrary dimension

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?