Exhaustive search of optimal formulae for bilinear maps

Svyatoslav Covanov
Supervisors: Jérémie Detrey and Emmanuel Thomé

Team CARAMBA
January 16, 2017

(1) Optimal formulae

(2) Previous work
(3) Contribution and experimental results

Karatsuba

How to multiply two polynomials $A=a_{0}+a_{1} X$ and $B=b_{0}+b_{1} X$?

Karatsuba

How to multiply two polynomials $A=a_{0}+a_{1} X$ and $B=b_{0}+b_{1} X$?
$A \cdot B=a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) X+a_{1} b_{1} X^{2}$
(1) Naive multiplication:

- $\pi_{0}=\boldsymbol{a}_{0} \boldsymbol{b}_{0}, \pi_{1}=\boldsymbol{a}_{1} \boldsymbol{b}_{0}, \pi_{2}=\boldsymbol{a}_{0} \boldsymbol{b}_{1}$ and $\pi_{3}=\boldsymbol{a}_{1} \boldsymbol{b}_{1}$.
- We have $A \cdot B=\pi_{0}+\left(\pi_{1}+\pi_{2}\right) X+\pi_{3} X^{2}$.
(2) Karatsuba:
- $\pi_{0}=\boldsymbol{a}_{0} \boldsymbol{b}_{0}, \pi_{1}=\boldsymbol{a}_{1} \boldsymbol{b}_{1}$ and $\pi_{2}=\left(\boldsymbol{a}_{0}+\boldsymbol{a}_{1}\right)\left(\boldsymbol{b}_{0}+\boldsymbol{b}_{1}\right)$.
- We have $A \cdot B=\pi_{0}+\left(\pi_{2}-\pi_{0}-\pi_{1}\right) X+\pi_{1} X^{2}$.

The bilinear rank is smaller than 3.

Short product

$$
\begin{aligned}
\Pi_{\ell}: K[X]_{<\ell} \times K[X]_{<\ell} & \rightarrow M[X]_{<\ell} \\
(A, B) & \mapsto A \cdot B \bmod X^{\ell}
\end{aligned}
$$

For $\ell=3$,

$$
\Pi_{3}:\left(\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right),\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right)\right) \mapsto\left(\begin{array}{c}
a_{0} b_{0} \\
a_{1} b_{0}+a_{0} b_{1} \\
a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}
\end{array}\right)=\left(\begin{array}{c}
\pi_{0} \\
\pi_{1} \\
\pi_{2}
\end{array}\right)
$$

Optimal decomposition: $\operatorname{rk}\left(\Pi_{3}\right)=5$
$a_{0} b_{0}, a_{1} b_{1}, a_{2} b_{2},\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right),\left(a_{0}+a_{2}\right)\left(b_{0}+b_{2}\right)$

Matrix formalism

$$
\begin{aligned}
& \pi_{0}=\left(\begin{array}{lll}
a_{0} & a_{1} & a_{2}
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right)=a_{0} b_{0} \\
& \pi_{1}=\left(\begin{array}{lll}
a_{0} & a_{1} & a_{2}
\end{array}\right) \cdot\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right)=a_{1} b_{0}+a_{0} b_{1} \\
& \pi_{2}=\left(\begin{array}{lll}
a_{0} & a_{1} & a_{2}
\end{array}\right) \cdot\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right)=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}
\end{aligned}
$$

Matrix representation of formulae:
$\underbrace{\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)}_{a_{0} b_{0}}, \underbrace{\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)}_{a_{1} b_{1}} \underbrace{\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)}_{a_{2} b_{2}} \underbrace{\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)}_{\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)} \underbrace{\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)}_{\left(a_{0}+a_{2}\right)\left(b_{0}+b_{2}\right)}$
Decomposition:
$\underbrace{\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)}_{\pi_{1}}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)-\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)-\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\underbrace{\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)}_{\pi_{2}}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)+\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)-\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)-\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$

Generators definition

Let \mathcal{G} be the set of generators

$$
\mathcal{G}=\left\{(A, B) \mapsto\left(\sum_{i} \lambda_{i} a_{i}\right)\left(\sum_{j} \mu_{j} b_{j}\right) \mid \lambda_{i} \in K, \mu_{j} \in K\right\} .
$$

For the short product Π_{3} over \mathbb{F}_{2}, the generators are

$$
\left.\left.\begin{array}{c}
\left\{\begin{array}{cccc}
a_{0} b_{0}, & a_{1} b_{0}, & a_{2} b_{0}, & \begin{array}{c}
a_{0} b_{1},
\end{array} \\
a_{0} b_{2}, & a_{1} b_{2}, & a_{2} b_{2}, & \left(a_{0}+b_{1},\right.
\end{array} \begin{array}{c}
a_{2} b_{1}, b_{0}, \\
\left(a_{0}+a_{2}\right) b_{0}, \\
\ldots
\end{array}\right\} \\
\downarrow \\
\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\right.
\end{array}\right\}\right\}
$$

Problem to be solved

Let $T_{\ell}=$
$\operatorname{Span}\left(\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 0 & . & 0 \\ \vdots & . & . & \vdots \\ 0 & 0 & \cdots & \vdots\end{array}\right),\left(\begin{array}{cccc}0 & 1 & \cdots & 0 \\ 1 & 0 & . & 0 \\ \vdots & . & . & \vdots \\ 0 & 0 & \cdots & 0\end{array}\right), \ldots,\left(\begin{array}{cccc}0 & 0 & \cdots & 1 \\ 0 & 0 & . & \vdots \\ \vdots & . & . & 0 \\ 1 & 0 & \cdots & 0\end{array}\right)\right)$.
Problem to be solved:
Find all free families of minimal size $\mathcal{F} \subset \mathcal{G}$ satisfying $T_{\ell} \subset \operatorname{Span}(\mathcal{F})$.

Definition

Let $r \geq 0$. We denote by \mathscr{S}_{r} all subspaces $V \subset \mathcal{M}_{\ell, \ell}$ such that there exists $\left\{g_{0}, \ldots, g_{r-1}\right\}$ a free family of \mathcal{G} satisfying

$$
V=\operatorname{Span}\left(g_{0}, \ldots, g_{r-1}\right) .
$$

We denote by $\mathscr{S}_{r, T}$ all subspaces $V \in \mathscr{S}_{r}$ such that $T \subset V$.

(1) Optimal formulae

(2) Previous work

(3) Contribution and experimental results

Naive algorithm

Naive algorithm
Input: ℓ, r
Output: $\mathscr{S}_{T_{\ell}, r}$
$\mathcal{S} \leftarrow \emptyset$
for $V \in \mathscr{S}_{r}$ do
$\triangleright \mathscr{S}_{r}=\left\{\operatorname{Span}\left(g_{0}, \ldots, g_{r-1}\right) \mid \forall i, g_{i} \in \mathcal{G}\right\}$
if $T_{\ell} \subset V$ then $\mathcal{S} \leftarrow \mathcal{S} \cup\{V\}$
end if
end for
return \mathcal{S}
Complexity: $\# \mathscr{S}_{r} \leq\binom{ \# \mathcal{G}}{r}$. For $\ell=3$ and $K=\mathbb{F}_{2}$, we have
$\# \mathscr{S}_{5}=157,535 \ll 1,906,884=\binom{49}{5}$.

Incomplete basis improvement

BDEZ '12 (Barbulescu, Detrey, Estibals, Zimmermann)
Input: ℓ, r
Output: $\mathscr{S}_{T_{\ell}, r}$
$\mathcal{S} \leftarrow \emptyset$
for $W \in \mathscr{S}_{r-\ell}$ do
if $T_{\ell}+W \in \mathscr{S}_{r}$ then

$$
\mathcal{S} \leftarrow \mathcal{S} \cup\left\{T_{\ell}+W\right\}
$$

end if
end for
return \mathcal{S}
Complexity: $\# \mathscr{S}_{r-\ell} \leq\binom{ \# \mathcal{G}}{r-\ell}$. For $\ell=3, \# \mathscr{S}_{2}=980 \ll 157,535$.

Automorphisms

We consider the action of couples (P, Q) (P and Q in GL_{ℓ}) on $M \in \mathcal{M}_{\ell, \ell}:$

$$
(P, Q) \cdot M=P \cdot M \cdot Q^{T} .
$$

Let $\operatorname{Stab}\left(T_{\ell}\right)$ be the group of (P, Q) such that

$$
\forall M \in T_{\ell},(P, Q) \cdot M \in T_{\ell} .
$$

Example

For $\ell=3$ and $P=Q=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$,

$$
(P, Q) \cdot\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=\pi_{1}+\pi_{2} \in T_{3} .
$$

Search with stabilizers
Input: ℓ, r
Output: $\mathscr{S}_{T_{\ell}, r}$

$$
\mathcal{S} \leftarrow \emptyset
$$

for $W \in \mathscr{S}_{r-\ell} / \operatorname{Stab}\left(T_{\ell}\right)$ do if $T_{\ell}+W \in \mathscr{S}_{r-\ell}$ then $\mathcal{S} \leftarrow \mathcal{S} \cup\left\{T_{\ell}+W\right\}$ end if
end for return $\mathcal{S}^{\text {Stab }(T)}$

Complexity: $\# \mathscr{S}_{r-\ell} / \# \operatorname{Stab}\left(T_{\ell}\right) \approx\binom{\# \mathcal{G}}{r-\ell} / \# \operatorname{Stab}\left(T_{\ell}\right)$. For $\ell=3$,

$$
\# \mathscr{S}_{2} / \operatorname{Stab}\left(T_{\ell}\right)=68, \# \operatorname{Stab}\left(T_{\ell}\right)=32 \text { and }\binom{49}{2} / 32 \approx 37 .
$$

(1) Optimal formulae

(2) Previous work

(3) Contribution and experimental results

The rank is a distance

Rank is a distance $D:(\Phi, \Psi) \mapsto \mathrm{rk}(\Phi-\Psi)$.

Example

$D\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right)=\operatorname{rk}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right)=2$.
We can extend the distance D to any set of formulae.

Definition (Neighbourhood)

Let \mathcal{S} and \mathcal{S}^{\prime} be sets of matrices. We define $D\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$ as

$$
D\left(\mathcal{S}, \mathcal{S}^{\prime}\right)=\min _{\Phi \in \mathcal{S}, \Psi \in \mathcal{S}^{\prime}}(\operatorname{rk}(\Phi-\Psi)) .
$$

We denote by $\mathcal{V}_{d}(\mathcal{S})$ the d-neighbourhood of \mathcal{S}.

Theorem

Let $W \in \mathscr{S}_{r-\ell}$ be such that

$$
T_{\ell} \oplus W \in \mathscr{S}_{r} .
$$

Then there exists $\sigma \in \operatorname{Stab}\left(T_{\ell}\right)$ such that

$$
W \circ \sigma \in \mathcal{V}_{1}\left(\pi_{\ell-1}\right) \cap \mathcal{V}_{1}\left(\pi_{\ell-2}\right)
$$

or

$$
W \circ \sigma \in \mathcal{V}_{1}\left(\pi_{\ell-1}\right) \cap \mathcal{V}_{1}\left(\pi_{\ell-1}-\pi_{\ell-2}\right)
$$

Example with $\ell=3$ on \mathbb{F}_{2}

We have

$$
T_{3}=\operatorname{Span}(\underbrace{a_{0} b_{0}}_{\pi_{0}}, \underbrace{a_{1} b_{0}+a_{0} b_{1}}_{\pi_{1}}, \underbrace{a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}}_{\pi_{2}})
$$

and the set of generators \mathcal{G} satisfies $\# \mathcal{G}=49$.

set enumerated	cardinality
\mathscr{S}_{2}	980
$\mathscr{S}_{2} \cap\left(\mathcal{V}_{1}\left(\pi_{2}\right) \cap \mathcal{V}_{1}\left(\pi_{1}\right)\right) \circ \operatorname{Stab}\left(T_{3}\right)$	64
$\mathscr{S}_{2} \cap\left(\mathcal{V}_{1}\left(\pi_{2}\right) \cap \mathcal{V}_{1}\left(\pi_{2}-\pi_{1}\right)\right) \circ \operatorname{Stab}\left(T_{3}\right)$	144

Improved search

Improved search
Input: n, r
$\mathcal{S} \leftarrow \emptyset$
for $W \in\left(\mathscr{S}_{r-\ell} \cap \mathcal{V}_{1}\left(\pi_{\ell-1}\right) \cap \mathcal{V}_{1}\left(\pi_{\ell-2}\right)\right) / \operatorname{Stab}\left(T_{\ell}\right)$ do if $T_{\ell}+W \in \mathscr{S}_{r}$ then $\mathcal{S} \leftarrow \mathcal{S} \cup\left\{T_{\ell}+W\right\}$ end if
end for
for $W \in\left(\mathscr{S}_{r-\ell} \cap \mathcal{V}_{1}\left(\pi_{\ell-1}\right) \cap \mathcal{V}_{1}\left(\pi_{\ell-1}-\pi_{\ell-2}\right)\right) / \operatorname{Stab}\left(T_{\ell}\right)$ do if $T_{\ell}+W \in \mathscr{S}_{r}$ then

$$
\mathcal{S} \leftarrow \mathcal{S} \cup\left\{T_{\ell}+W\right\}
$$

end if
end for
return $\mathcal{S}^{\operatorname{Stab}\left(T_{\ell}\right)}$

We compare our approach to the search with stabilizer:

product	time (s)	est. speed-up	nb. of solutions
ShortProduct $_{4}$	3.0	10	1,440
ShortProduct $_{5}$	$2.4 \cdot 10^{3}$	10^{5}	146,944

Table: Computation of decompositions of the short product on a single core 3.3 GHz Intel Core i5-4590.

Matrix product 3×2 by 2×3

$\Pi_{p, q, r}$: the bilinear map
$\pi_{i, j}$: the bilinear forms of the coefficients
Equations for $\Pi_{3,2,3}$:

- $\mathscr{S}_{6} \cap \mathcal{V}_{1}\left(\pi_{1,1}+\pi_{2,2}+\pi_{3,3}\right)$
- $\mathscr{S}_{6} \cap \mathcal{V}_{1}\left(\pi_{1,1}+\pi_{2,2}\right) \cap \mathcal{V}_{1}\left(\pi_{1,1}+\pi_{3,3}\right)$
- $\mathscr{S}_{6} \cap \mathcal{V}_{1}\left(\pi_{1,1}+\pi_{2,2}\right) \cap \mathcal{V}_{1}\left(\pi_{1,2}+\pi_{3,3}\right)$
- $\mathscr{S}_{6} \cap \mathcal{V}_{1}\left(\pi_{1,1}+\pi_{2,2}\right) \cap \mathcal{V}_{1}\left(\pi_{3,3}\right)$
- $\mathscr{S}_{6} \cap \mathcal{V}_{1}\left(\pi_{1,1}\right) \cap \mathcal{V}_{1}\left(\pi_{2,2}\right) \cap \mathcal{V}_{1}\left(\pi_{3,3}\right)$

product	time (s)	est. speed-up	nb. of solutions
2×3 by 3×2	$4.1 \cdot 10^{6}$	10^{9}	$1,096,452$
3×2 by 2×3	$3.0 \cdot 10^{6}$	10^{4}	7,056

Table: Computation of decompositions of the matrix product on a single core 3.3 GHz Intel Core i5-4590.

Conclusion

We obtain interesting speed-up for symmetric bilinear maps such as matrix product and short product.

What kind of predicates for polynomials product (small group of symmetry)?

How to push computations further: possible to decompose matrix product 3×3 by 3×3 ?

