On the nature of the generating series of walks in the quarter plane

Thomas Dreyfus ${ }^{1}$ Joint work with Charlotte Hardouin ${ }^{2}$ and Julien Roques ${ }^{3}$ and Michael Singer ${ }^{4}$

${ }^{1}$ University Lyon 1, France
${ }^{2}$ University Toulouse 3, France
${ }^{3}$ University Grenoble 1, France
${ }^{4}$ North Carolina State University, USA

- Consider the walks in the quarter plane starting from $(0,0)$ with steps in a fixed set

$$
\mathcal{D} \subset\{\leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow, \swarrow\}
$$

- Example with possible directions

$$
\mathcal{D} \subset\{\leftarrow, \uparrow, \rightarrow, \searrow, \downarrow, \swarrow\}
$$

Abstract

- Let $f_{\mathcal{D}, i, j, k}$ equals the number of walks in \mathbb{N}^{2} starting from $(0,0)$ ending at (i, j) in k steps in \mathcal{D}.
- Generating series: $F_{\mathcal{D}}(x, y, t):=\sum_{i, j, k} f_{\mathcal{D}, i, j, k} x^{i} y^{j} t^{k}$.
- Classification problem: when $F_{\mathcal{D}}(x, y, t)$ is algebraic, holonomic, differentially algebraic?
- Today, we are able to classify in which cases $F_{\mathcal{D}}$ is algebraic (resp. holonomic).
\rightarrow O. Bernardi, A. Bostan, M. Bousquet-Mélou, F. Chyzak, G. Fayole, M. van Hoeij, R. Iasnogorodski, M. Kauers, I. Kurkova, V. Malyshev, M. Mishna, K. Raschel, B. Salvy...

Definition

- Let $f \in \mathbb{C}((x))$. We say that f is differentially algebraic if $\exists n \in \mathbb{N}, P \in \mathbb{C}(x)\left[X_{0}, \ldots, X_{n}\right]$ such that

$$
P\left(f, f^{\prime}, \ldots, f^{(n)}\right)=0 .
$$

- Otherwise we say that f is differentially transcendent.
(1) Classification of the walks
(2) Elliptic functions
(3) Transcendence of the generating functions
(4) Algebraic cases

Identify directions in \mathcal{D} by $(i, j), i, j \in\{-1,0,1\}$.
Consider

$$
S_{\mathcal{D}}(x, y)=\sum_{(i, j) \in \mathcal{D}} x^{i} y^{j}
$$

and the kernel of the walk is

$$
K_{\mathcal{D}}(x, y, t):=x y\left(1-t S_{\mathcal{D}}(x, y)\right)
$$

Example

$$
\begin{gathered}
\mathcal{D}=\{\leftarrow, \uparrow, \searrow\}=\{(-1,0),(0,1),(1,-1)\} \\
S_{\mathcal{D}}(x, y)=x^{-1}+y+x y^{-1} \\
K_{\mathcal{D}}(x, y, t):=x y-t\left(y+x y^{2}+x^{2}\right)
\end{gathered}
$$

The generating series $F_{\mathcal{D}}(x, y, t)$ and the kernel $K_{\mathcal{D}}(x, y, t)$ satisfy the following equation

$$
\begin{aligned}
& K_{\mathcal{D}}(x, y, t) F_{\mathcal{D}}(x, y, t)= \\
& \quad \begin{aligned}
& x y-K_{\mathcal{D}}(x, 0, t) F_{\mathcal{D}}(x, 0, t)-K_{\mathcal{D}}(0, y, t) F_{\mathcal{D}}(0, y, t) \\
&+K_{\mathcal{D}}(0,0, t) F_{\mathcal{D}}(0,0, t) .
\end{aligned}
\end{aligned}
$$

Fix $t \notin \overline{\mathbb{Q}}$. Consider the algebraic curve

$$
E_{t}:=\left\{(x, y) \in \mathbb{P}_{1}(\mathbb{C})^{2} \mid K_{\mathcal{D}}(x, y, t)=0\right\} .
$$

Consider the involutions

$$
\left.\begin{array}{rl}
\iota_{1}:=E_{t} & \rightarrow E_{t} \\
& (x, y)
\end{array}\right)\left(x, \frac{\sum_{(i,-1) \in \mathcal{D}^{i}}}{\left.y \sum_{(i, 1) \in \mathcal{D}^{i}}\right)} .\right.
$$

We attach to \mathcal{D} the group of the walk

$$
G_{t}:=\left\langle\iota_{1}, \iota_{2}\right\rangle .
$$

Over the 2^{8} possible walks, only 79 need to be studied.

- $\forall t, \# G_{t}<\infty$ for 23 walks.
\rightarrow A. Bostan, M. Bousquet-Mélou, M. Kauers, M. Mishna
- $\exists t, \# G_{t}=\infty$ for 56 walks.
- E_{t} has genus zero for 5 walks.
- E_{t} has genus one for 51 walks.
\rightarrow I. Kurkova, K. Raschel
From now we fix $t \notin \overline{\mathbb{Q}}$ such that $\# G_{t}=\infty$ and assume that E_{t} has genus one.

E_{t} is an elliptic curve

Rough statement of the main result.

$$
\begin{aligned}
& \text { 远 }
\end{aligned}
$$

Theorem (D-H-R-S 2017)

In 42 cases, $x \mapsto F_{\mathcal{D}}(x, 0, t), y \mapsto F_{\mathcal{D}}(0, y, t)$ are diff. tr. In 9 cases, $x \mapsto F_{\mathcal{D}}(x, 0, t), y \mapsto F_{\mathcal{D}}(0, y, t)$ are diff. alg.

- $\operatorname{Mer}\left(E_{t}\right)=$ meromorphic function on E_{t}.
- $\exists \omega_{1, t} \in \mathbb{R}_{>0}, \omega_{2, t} \in \mathbb{R}_{>0}$, such that

$$
\mathcal{M e r}\left(E_{t}\right)=\left\{f(\omega) \in \mathcal{M e r}(\mathbb{C}) \mid f(\omega)=f\left(\omega+\omega_{1, t}\right)=f\left(\omega+\omega_{2, t}\right)\right\}
$$

- We define the Weierstrass function:

$$
\wp_{t}(\omega)=\frac{1}{\omega^{2}}+\sum_{p, q \in \mathbb{Z}^{2} \backslash(0,0)} \frac{1}{\left(\omega+p \omega_{1, t}+q \omega_{2, t}\right)^{2}}-\frac{1}{\left(p \omega_{1, t}+q \omega_{2, t}\right)^{2}}
$$

- $\operatorname{Mer}\left(E_{t}\right)=\mathbb{C}\left(\wp_{t}(\omega), \partial_{\left.\omega \wp_{t}(\omega)\right) \text {. } ~}^{\text {. }}\right.$

Proposition (Kurkova, Raschel)

The series $x \mapsto F_{\mathcal{D}}(x, 0, t), y \mapsto F_{\mathcal{D}}(0, y, t)$ admit multivalued meromorphic continuation on the elliptic curve E_{t}.

- Let $\widetilde{F}_{x, \mathcal{D}}(\omega)$ (resp. $\left.\widetilde{F}_{y, \mathcal{D}}(\omega)\right)$ be the meromorphic continuation of $F_{\mathcal{D}}(x, 0, t)$ (resp. $F_{\mathcal{D}}(0, y, t)$), we will see as meromorphic functions on \mathbb{C}.
- \exists explicit $f \in \mathbb{C}(X)$ (resp. $g \in \mathbb{C}(X), \omega_{3, t} \in \mathbb{R}_{>0}$) such that $x=f\left(\wp_{t}(\omega)\right)\left(\right.$ resp. $\left.y=g\left(\wp_{t}\left(\omega-\omega_{3, t} / 2\right)\right)\right)$.

Theorem (Kurkova, Raschel)

The function $\widetilde{F}_{X, \mathcal{D}}(\omega)$ (resp. $\widetilde{F}_{y, \mathcal{D}}(\omega)$) is not holonomic.

The meromorphic continuation satisfy

$$
\begin{aligned}
& \tau\left(\widetilde{F}_{x, \mathcal{D}}(\omega)\right)=\widetilde{F}_{x, \mathcal{D}}(\omega) \quad+y(-\omega)\left(x\left(\omega+\omega_{3, t}\right)-x(\omega)\right), \\
& \tau\left(\widetilde{F}_{y, \mathcal{D}}(\omega)\right)=\widetilde{F}_{y, \mathcal{D}}(\omega) \quad+x(\omega)(y(-\omega)-y(\omega)),
\end{aligned}
$$

where $\tau:=h(\omega) \mapsto h\left(\omega+\omega_{3, t}\right)$.
These are two difference equations and we may use difference Galois theory.

Some consequences of difference Galois theory

Let $b:=x(\omega)(y(-\omega)-y(\omega))$.

Proposition (D-H-R-S 2017)

The function $\tilde{F}_{y, \mathcal{D}}$ is diff. alg. iff there exist an integer $n \geq 1$, $c_{0}, \ldots, c_{n-1} \in \mathbb{C}$ and $h \in \operatorname{Mer}\left(E_{t}\right)$ such that

$$
\partial_{\omega}^{n}(b)+c_{n-1} \partial_{\omega}^{n-1}(b)+\cdots+c_{1} \partial_{\omega}(b)+c_{0} b=\tau(h)-h .
$$

Corollary

$\tilde{F}_{X, \mathcal{D}}$ is diff. alg. $\Leftrightarrow \tilde{F}_{y, \mathcal{D}}$ is diff. alg.
Corollary
Assume that b has a pole $\omega_{0} \in \mathbb{C}$, such that, for all $0 \neq k \in \mathbb{Z}$, $\tau^{k}\left(\omega_{0}\right)$ not a pole of b. Then, $\widetilde{F}_{y, \mathcal{D}}$ is diff. tr.

We now see b as a function $\mathbb{P}_{1}(\mathbb{C})^{2} \supset E_{t} \rightarrow \mathbb{P}_{1}(\mathbb{C})$. The set of poles of b is contained in

$$
\{\underbrace{\left(\infty, \alpha_{1}\right),\left(\infty, \alpha_{2}\right)}_{\text {Poles of } x(\omega)}, \underbrace{\left(\beta_{1}, \infty\right),\left(\beta_{2}, \infty\right)}_{\text {Poles of } y(\omega)}, \underbrace{\left(\beta_{1}, \gamma_{1}\right),\left(\beta_{2}, \gamma_{2}\right)}_{\text {Poles of } y(-\omega)}\} .
$$

Lemma

- In the poles of $x, \alpha_{1}, \alpha_{2}$ are roots of $\sum_{(1, j) \in \mathcal{D}} y^{j+1}$.
- In the poles of y, β_{1}, β_{2} are roots of $\sum_{(i, 1) \in \mathcal{D}} x^{i+1}$.

Lemma

Let $\mathbb{Q}(t) \subset L \subset \mathbb{C}$ field ext. Let $P \in E_{t}$. Then
$P \in \mathbb{P}_{1}(L)^{2} \Leftrightarrow \tau(P) \in \mathbb{P}_{1}(L)^{2} \Leftrightarrow \iota_{1}(P) \in \mathbb{P}_{1}(L)^{2} \Leftrightarrow \iota_{2}(P) \in \mathbb{P}_{1}(L)^{2}$.

Generic case

Theorem (D-H-R-S 2017)

Assume that $\left\{\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right\} \cap(\mathbb{C} \backslash \mathbb{Q}(t)) \neq \varnothing$. Then, $\widetilde{F}_{x, \mathcal{D}}, \widetilde{F}_{y, \mathcal{D}}$ are differentially transcendent.

Sketch of proof in the case

- The poles of b are $\{(\infty, \pm \mathrm{i}),(\pm \mathrm{i}, \infty),(\pm \mathrm{i}, \pm \mathrm{i} t+t)\}$.
- Involution $\sigma \in \operatorname{Gal}(\mathbb{Q}(\mathrm{i}, t) \mid \mathbb{Q}(t))$. Then $\sigma \circ \tau=\tau \circ \sigma$.

Definition

Let $P, Q \in E_{t}$. We say that $P \sim Q$ if $\exists k \in \mathbb{Z}$ such that $\tau^{k}(P)=Q$.

Lemma

$(\infty, i) \nsim(\infty,-i)$.

Proof.

Assume that $\tau^{k}(\infty, i)=(\infty,-i)$. We have $\tau^{k}(\infty,-i)=(\infty, i)$ and $\tau^{2 k}(\infty, i)=(\infty, i)$. No fixed point by τ implies $k=0$.
Contradiction.

Sketch of proof in the case

- The poles of b are $\{(\infty, \pm \mathrm{i}),(\pm \mathrm{i}, \infty),(\pm \mathrm{i}, \pm \mathrm{i} t+t)\}$.
- Involution $\sigma \in \operatorname{Gal}(\mathbb{Q}(\mathrm{i}, t) \mid \mathbb{Q}(t))$. Then $\sigma \circ \tau=\tau \circ \sigma$.

Definition

Let $P, Q \in E_{t}$. We say that $P \sim Q$ if $\exists k \in \mathbb{Z}$ such that $\tau^{k}(P)=Q$.

Lemma

$(\infty, \mathrm{i}) \nsim\{(\infty,-\mathrm{i}),(\pm \mathrm{i}, \infty),(\pm \mathrm{i}, \pm \mathrm{i} t+t)\}$.

Triple pole case $\left(\lambda_{,} \notin \mathcal{D}\right)$

Triple pole case $\left(\lambda_{,} \rightarrow \notin \mathcal{D}\right)$

- (∞, ∞) double pole of x.
- (∞, ∞) simple pole of y.
- (∞, ∞) only triple pole of b.

Corollary

Assume that $\nearrow, \rightarrow \notin \mathcal{D}$. Then, $\widetilde{F}_{x, \mathcal{D}}, \widetilde{F}_{y, \mathcal{D}}$ are diff. tr.

我出答第

－(∞, ∞) simple pole of x ，resp y ．
－(∞, \star) simple pole of x ，resp．$y(-\omega)$ ．
－$(\infty, \infty),(\infty, \star)$ are only double poles of b ．

Lemma

If $(\infty, \infty) \sim(\infty, \star)$ ，then $\exists k \in \mathbb{Z}, j \in\{1,2\}$ s．t．

$$
\iota_{j} \circ \tau^{k}(\infty, \infty)=\tau^{k}(\infty, \infty)
$$

Corollary
Assume that $\mathcal{D} \in\left\{\begin{array}{llll}\text { 両 } & \text { 我 }\end{array}\right\}$ ．Then，$\widetilde{F}_{x, \mathcal{D}}, \widetilde{F}_{y, \mathcal{D}}$ are diff．tr．

There are 3 simple poles: $(\infty, 0),(0, \infty)$, and $(0,-1)$.
Lemma
If $(\alpha, \beta) \sim(\beta, \alpha), \alpha, \beta \in \mathbb{P}_{1}(\mathbb{Q}(t))$, then $\exists \gamma \in \mathbb{P}_{1}(\mathbb{Q}(t))$, s.t.

$$
K_{\mathcal{D}}(\gamma, \gamma, t)=0 .
$$

Corollary
The series $\widetilde{F}_{x, \mathcal{D}}, \widetilde{F}_{y, \mathcal{D}}$ are diff. tr.

Algebraic cases

式旍密

$$
\begin{aligned}
& \text { 堿感些城堿然 }
\end{aligned}
$$

Polar divisor of b	$\left(-1, \frac{t}{t+1}\right)$
	$+(\infty, 0)$
	$+(-1, \infty)$
τ－Orbit of one of	$\left(-1, \frac{t}{t+1}\right)$
the poles of b	$\downarrow \tau$
	$(0, \infty)$
	$\downarrow \tau$
	$(\infty, 0)$
	$\downarrow \tau$
	$(0,0)$
	$\downarrow \tau$
	$(-1, \infty)$

In 8 cases，every poles of b are on the same orbit
迪线线为为然

Proposition (D-H-R-S 2017)

The function $\widetilde{F}_{y, \mathcal{D}}$ is diff. alg. iff for all poles ω_{0} of b, we have that

$$
h(\omega)=\sum_{i=1}^{s} b\left(\omega+n_{i} \omega_{3, t}\right)
$$

is analytic at ω_{0} where $\omega_{0}+n_{1} \omega_{3, t}, \ldots, \omega+n_{s} \omega_{3, t}$ are the poles of b that belong to $\omega_{0}+\mathbb{Z} \omega_{3, t}$.

$$
2
$$

Uni-orbit, simple pole case

Lemma

$b \in \operatorname{Mer}\left(E_{t}\right) \Longrightarrow$ sum of residues of b is zero.

Corollary

 the same orbit and are simple. Consequently, $\widetilde{F}_{x, \mathcal{D}}, \widetilde{F}_{y, \mathcal{D}}$ are diff. alg.

$$
\begin{aligned}
& \text { 通出業 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { z }
\end{aligned}
$$

速戗戈速

Lemma

If $b=\sum_{\ell \geq k} \frac{c_{\ell}}{\left(\omega-\omega_{0}\right)^{\ell}}$ ，then $b=\sum_{\ell \geq k} \frac{(-1)^{\ell+1} c_{\ell}}{\left(\omega+\omega_{0}\right)^{\ell}}$ ．
Sketch of proof．
We use $b(-\omega)=-b(\omega)$ ．

Corollary

 of b are on the same orbit and are at most double．
Consequently，$\widetilde{F}_{x, \mathcal{D}}, \widetilde{F}_{y, \mathcal{D}}$ are diff．alg．

这

Bi-orbit case

Conclusion and perspectives

- Mix of algebra and analysis allows us to treat every cases.
- In the differentially algebraic cases, explicit computation of the telescoper should lead to the expression of the differential equations.
- We now should be able to treat the genus zero case.

