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Abstract

• Consider the walks in the quarter plane starting from (0,0)
with steps in a fixed set

D ⊂ { , , , , , , , }.

• Example with possible directions

D ⊂ { , , , , , }.
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Abstract

• Let fD,i,j,k equals the number of walks in N2 starting from
(0,0) ending at (i , j) in k steps in D.

• Generating series: FD(x , y , t) :=
∑
i,j,k

fD,i,j,kx iy j tk .

• Classification problem: when FD(x , y , t) is algebraic,
holonomic, differentially algebraic?

• Today, we are able to classify in which cases FD is
algebraic (resp. holonomic).
→ O. Bernardi, A. Bostan, M. Bousquet-Mélou, F. Chyzak, G. Fayole, M. van Hoeij, R. Iasnogorodski, M.

Kauers, I. Kurkova, V. Malyshev, M. Mishna, K. Raschel, B. Salvy...

Definition

• Let f ∈ C((x)). We say that f is differentially algebraic if
∃n ∈ N, P ∈ C(x)[X0, . . . ,Xn] such that

P(f , f ′, . . . , f (n)) = 0.

• Otherwise we say that f is differentially transcendent.
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1 Classification of the walks

2 Elliptic functions

3 Transcendence of the generating functions

4 Algebraic cases
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The kernel of the walk

Identify directions in D by (i , j), i , j ∈ {−1,0,1}.
Consider

SD(x , y) =
∑

(i,j)∈D
x iy j ,

and the kernel of the walk is

KD(x , y , t) := xy(1− tSD(x , y)).

Example

D = {←, ↑,↘} = {(−1,0), (0,1), (1,−1)}.

SD(x , y) = x−1 + y + xy−1,

KD(x , y , t) := xy − t(y + xy2 + x2).
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The functional equation of the walk

The generating series FD(x , y , t) and the kernel KD(x , y , t)
satisfy the following equation

KD(x , y , t)FD(x , y , t) =
xy − KD(x ,0, t)FD(x ,0, t)− KD(0, y , t)FD(0, y , t)

+ KD(0,0, t)FD(0,0, t).
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Group of the walk

Fix t /∈ Q. Consider the algebraic curve

Et := {(x , y) ∈ P1(C)2|KD(x , y , t) = 0}.

Consider the involutions

ι1 := Et → Et

(x , y) 7→
(

x ,
∑

(i,−1)∈D x i

y
∑

(i,1)∈D x i

)
ι2 := Et → Et

(x , y) 7→
(∑

(−1,j)∈D y j

x
∑

(1,j)∈D y j , y
)
.

We attach to D the group of the walk

Gt := 〈ι1, ι2〉.

7/27



Reduction to an elliptic case.

Over the 28 possible walks, only 79 need to be studied.
• ∀t ,#Gt <∞ for 23 walks.

→ A. Bostan, M. Bousquet-Mélou, M. Kauers, M. Mishna

• ∃t ,#Gt =∞ for 56 walks.
• Et has genus zero for 5 walks.
• Et has genus one for 51 walks.

→ I. Kurkova, K. Raschel

From now we fix t /∈ Q such that #Gt =∞ and assume that Et
has genus one.

Et is an elliptic curve
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Rough statement of the main result.

Theorem (D-H-R-S 2017)

In 42 cases, x 7→ FD(x ,0, t), y 7→ FD(0, y , t) are diff. tr.

In 9 cases, x 7→ FD(x ,0, t), y 7→ FD(0, y , t) are diff. alg.
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Elliptic functions

• Mer(Et) = meromorphic function on Et .
• ∃ω1,t ∈ iR>0, ω2,t ∈ R>0, such that

Mer(Et) = {f (ω) ∈Mer(C)|f (ω) = f (ω+ω1,t) = f (ω+ω2,t)}.

• We define the Weierstrass function:

℘t(ω) =
1
ω2+

∑
p,q∈Z2\(0,0)

1
(ω + pω1,t + qω2,t)2−

1
(pω1,t + qω2,t)2 .

• Mer(Et) = C(℘t(ω), ∂ω℘t(ω)).
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Analytic continuation

Proposition (Kurkova, Raschel)

The series x 7→ FD(x ,0, t), y 7→ FD(0, y , t) admit multivalued
meromorphic continuation on the elliptic curve Et .

• Let F̃x ,D(ω) (resp. F̃y ,D(ω)) be the meromorphic
continuation of FD(x ,0, t) (resp. FD(0, y , t)), we will see as
meromorphic functions on C.

• ∃ explicit f ∈ C(X ) (resp. g ∈ C(X ), ω3,t ∈ R>0) such that
x = f (℘t(ω)) (resp. y = g(℘t(ω − ω3,t/2))).

Theorem (Kurkova, Raschel)

The function F̃x ,D(ω) (resp. F̃y ,D(ω)) is not holonomic.
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Functional equation evaluated on Et

The meromorphic continuation satisfy

τ
(
F̃x ,D(ω)

)
= F̃x ,D(ω) +y(−ω)

(
x(ω + ω3,t)− x(ω)

)
,

τ
(
F̃y ,D(ω)

)
= F̃y ,D(ω) +x(ω)(y(−ω)− y(ω)),

where τ := h(ω) 7→ h(ω + ω3,t).
These are two difference equations and we may use difference
Galois theory.
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Some consequences of difference Galois theory

Let b := x(ω)(y(−ω)− y(ω)).

Proposition (D-H-R-S 2017)

The function F̃y ,D is diff. alg. iff there exist an integer n ≥ 1,
c0, . . . , cn−1 ∈ C and h ∈Mer(Et) such that

∂n
ω(b) + cn−1∂

n−1
ω (b) + · · ·+ c1∂ω(b) + c0b = τ(h)− h.

Corollary

F̃x ,D is diff. alg. ⇔ F̃y ,D is diff. alg.

Corollary

Assume that b has a pole ω0 ∈ C, such that, for all 0 6= k ∈ Z,
τ k (ω0) not a pole of b. Then, F̃y ,D is diff. tr.

13/27



Poles of b

We now see b as a function P1(C)2 ⊃ Et → P1(C). The set of
poles of b is contained in

{(∞, α1), (∞, α2)︸ ︷︷ ︸
Poles of x(ω)

, (β1,∞), (β2,∞)︸ ︷︷ ︸
Poles of y(ω)

, (β1, γ1), (β2, γ2)︸ ︷︷ ︸
Poles of y(−ω)

}.

Lemma

• In the poles of x, α1, α2 are roots of
∑

(1,j)∈D y j+1.

• In the poles of y, β1, β2 are roots of
∑

(i,1)∈D x i+1.
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The base field

Lemma

Let Q(t) ⊂ L ⊂ C field ext. Let P ∈ Et . Then

P ∈ P1(L)2 ⇔ τ(P) ∈ P1(L)2 ⇔ ι1(P) ∈ P1(L)2 ⇔ ι2(P) ∈ P1(L)2.
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Generic case

Theorem (D-H-R-S 2017)

Assume that {α1, α2, β1, β2} ∩ (C \Q(t)) 6= ∅. Then, F̃x ,D, F̃y ,D
are differentially transcendent.
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Sketch of proof in the case

• The poles of b are {(∞,±i), (±i,∞), (±i,±it + t)}.
• Involution σ ∈ Gal(Q(i, t)|Q(t)). Then σ ◦ τ = τ ◦ σ.

Definition

Let P,Q ∈ Et . We say that P ∼ Q if ∃k ∈ Z such that
τ k (P) = Q.

Lemma

(∞, i) 6∼ (∞,−i).

Proof.

Assume that τ k (∞, i) = (∞,−i). We have τ k (∞,−i) = (∞, i)
and τ2k (∞, i) = (∞, i). No fixed point by τ implies k = 0.
Contradiction.
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Triple pole case ( , /∈ D)

• (∞,∞) double pole of x .
• (∞,∞) simple pole of y .
• (∞,∞) only triple pole of b.

Corollary

Assume that , /∈ D. Then, F̃x ,D, F̃y ,D are diff. tr.
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Double pole case ( /∈ D)

• (∞,∞) simple pole of x , resp y .
• (∞, ?) simple pole of x , resp. y(−ω).
• (∞,∞), (∞, ?) are only double poles of b.

Lemma

If (∞,∞) ∼ (∞, ?), then ∃k ∈ Z, j ∈ {1,2} s.t.

ιj ◦ τ k (∞,∞) = τ k (∞,∞).

Corollary

Assume that D ∈
{ }

. Then, F̃x ,D, F̃y ,D
are diff. tr.
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A symmetric case:

There are 3 simple poles: (∞,0), (0,∞), and (0,−1).

Lemma

If (α, β) ∼ (β, α), α, β ∈ P1(Q(t)), then ∃γ ∈ P1(Q(t)), s.t.

KD(γ, γ, t) = 0.

Corollary

The series F̃x ,D, F̃y ,D are diff. tr.
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Algebraic cases
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Orbit of the poles, case

Polar divisor of b (−1, t
t+1)

+(∞,0)
+(−1,∞)

τ -Orbit of one of (−1, t
t+1)

the poles of b ↓ τ
(0,∞)
↓ τ

(∞,0)
↓ τ

(0,0)
↓ τ

(−1,∞)

In 8 cases, every poles of b are on the same orbit
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A criteria of algebraicity

Proposition (D-H-R-S 2017)

The function F̃y ,D is diff. alg. iff for all poles ω0 of b, we have
that

h(ω) =
s∑

i=1

b(ω + niω3,t)

is analytic at ω0 where ω0 + n1ω3,t , . . . , ω + nsω3,t are the poles
of b that belong to ω0 + Zω3,t .
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Uni-orbit, simple pole case

Lemma

b ∈Mer(Et) =⇒ sum of residues of b is zero.

Corollary

Assume that D ∈
{ }

. Then, every poles of b are on

the same orbit and are simple. Consequently, F̃x ,D, F̃y ,D are
diff. alg.
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Uni-orbit, double pole case

Lemma

If b =
∑
`≥k

c`

(ω − ω0)`
, then b =

∑
`≥k

(−1)`+1c`

(ω + ω0)`
.

Sketch of proof.

We use b(−ω) = −b(ω).

Corollary

Assume that D ∈
{ }

. Then, every poles
of b are on the same orbit and are at most double.
Consequently, F̃x ,D, F̃y ,D are diff. alg.
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Bi-orbit case

Walk

Polar divisor of b (−1, t
2t+1), [α] +(∞,−1), [−α]

[Residue] +(∞,0), [−α] +(−1,∞), [α]

τ -Orbit of the poles (−1, t
2t+1) (∞,−1)
↓ τ ↓ τ

(0,∞) 6∼ (0,0)
↓ τ ↓ τ

(∞,0) (−1,∞)

Walk

Polar divisor of b (−1, −t
t+1), [α] +(∞,−1), [−α]

[Residue] +(−1,∞), [α] +(∞,0), [−α]
τ -Orbit of the poles (−1, −t

t+1) (∞,−1)
↓ τ ↓ τ

(0,∞) 6∼ (∞,0)
↓ τ

(−1,∞)
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Conclusion and perspectives

• Mix of algebra and analysis allows us to treat every cases.
• In the differentially algebraic cases, explicit computation of

the telescoper should lead to the expression of the
differential equations.

• We now should be able to treat the genus zero case.
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