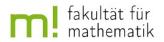
Computer algebra for hyperbolic programming

Simone Naldi

(joint with **D. Plaumann**)

Technische Universität Dortmund

JNCF 2017 Luminy, 17/01/2017



Hyperbolic polynomials

Definition of hyperbolic polynomial

- $f \in \mathbb{R}[x]_d$ is hyperbolic w.r.t. $\boldsymbol{e} = (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n) \in \mathbb{R}^n$ if
 - $f(e) \neq 0$ (we suppose w.l.o.g. f(e) = 1)
 - ▶ $\forall a \in \mathbb{R}^n \ t \mapsto ch_a(t) := f(t e a)$ has only real roots

If such *e* exists, *f* is called a *hyperbolic polynomial*.

Hyperbolic polynomials

Definition of hyperbolic polynomial

- $f \in \mathbb{R}[x]_d$ is hyperbolic w.r.t. $\boldsymbol{e} = (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n) \in \mathbb{R}^n$ if
 - $f(e) \neq 0$ (we suppose w.l.o.g. f(e) = 1)
 - ▶ $\forall a \in \mathbb{R}^n \ t \mapsto ch_a(t) := f(t e a)$ has only real roots

If such *e* exists, *f* is called a *hyperbolic polynomial*.

Fundamental examples:

(1) Products of real linear forms: $f = x_1 \cdots x_d$ For $e = \mathbf{1} = (1, \dots, 1)$ $ch_a(t) = (t - a_1) \cdots (t - a_d)$

Hyperbolic polynomials

Definition of hyperbolic polynomial

- $f \in \mathbb{R}[x]_d$ is hyperbolic w.r.t. $\boldsymbol{e} = (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n) \in \mathbb{R}^n$ if
 - $f(e) \neq 0$ (we suppose w.l.o.g. f(e) = 1)
 - ▶ $\forall a \in \mathbb{R}^n \ t \mapsto ch_a(t) := f(t e a)$ has only real roots

If such *e* exists, *f* is called a *hyperbolic polynomial*.

Fundamental examples:

- (1) Products of real linear forms: $f = x_1 \cdots x_d$ For $e = \mathbf{1} = (1, \dots, 1)$ $ch_a(t) = (t - a_1) \cdots (t - a_d)$
- (2) Symmetric determinant: f = det(X), X symmetric matrix For $e = \mathbb{I}_d$ $ch_a(t)$ is the characteristic polynomial of $a \in \mathbb{S}_d(\mathbb{R})$

Convex optimization: (1) Linear Programming and (2) Semidefinite Programming

Definition of hyperbolicity cone

The hyperbolicity cone of $f \in \mathbb{R}[x]_d$ (w.r.t. e) is

$$\Lambda_+(f, e) = \{ a \in \mathbb{R}^n : ch_a(t) = 0 \Rightarrow t \ge 0 \}$$

Definition of hyperbolicity cone

The hyperbolicity cone of $f \in \mathbb{R}[x]_d$ (w.r.t. e) is

$$\Lambda_+(f, e) = \{ a \in \mathbb{R}^n : ch_a(t) = 0 \Rightarrow t \ge 0 \}$$

Base-cases:

(1) For
$$f = x_1 \cdots x_d$$
, $e = \mathbf{1}$: $\Lambda_+(f, \mathbf{1}) = \mathbb{R}^n_+$ (LP)
(2) $f = \det(X)$, $e = \mathbb{I}_d$: $\Lambda_+(f, \mathbb{I}_d) = PSD$ cone (SDP)

Definition of hyperbolicity cone

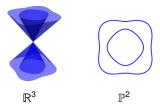
The hyperbolicity cone of $f \in \mathbb{R}[x]_d$ (w.r.t. e) is

$$\Lambda_+(f, e) = \{ a \in \mathbb{R}^n : ch_a(t) = 0 \Rightarrow t \ge 0 \}$$

Base-cases:

(1) For
$$f = x_1 \cdots x_d$$
, $e = \mathbf{1}$: $\Lambda_+(f, \mathbf{1}) = \mathbb{R}^n_+$ (LP)
(2) $f = \det(X)$, $e = \mathbb{I}_d$: $\Lambda_+(f, \mathbb{I}_d) = PSD$ cone (SDP)

(3) General case (here d = 4):



Definition of hyperbolicity cone

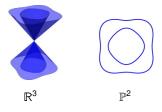
The hyperbolicity cone of $f \in \mathbb{R}[x]_d$ (w.r.t. e) is

$$\Lambda_+(f, e) = \{ a \in \mathbb{R}^n : ch_a(t) = 0 \Rightarrow t \ge 0 \}$$

Base-cases:

(1) For
$$f = x_1 \cdots x_d$$
, $e = 1$: $\Lambda_+(f, 1) = \mathbb{R}^n_+$ (LP)
(2) $f = \det(X)$, $e = \mathbb{I}_d$: $\Lambda_+(f, \mathbb{I}_d) = PSD$ cone (SDP)

(3) General case (here d = 4):



A hierarchy of convex opt. problems: Linear Programming (LP) ↓ Semidefinite Programming (SDP) ↓ Hyperbolic Programming (HP)

Can we design Algebraic/Exact methods?

The Lax conjecture

Examples of hyperbolic polynomials

- Elementary Symmetric polynomials $f = \sum x_i, \sum x_i x_j, \ldots$
- ► Derivatives along hyperbolic directions: *f* hyperb. $\Rightarrow \sum e_i \frac{\partial f}{\partial x_i}$ hyperb.
- $f = \det(A_1x_1 + \cdots + A_nx_n)$, where $\exists e \text{ with } e_1A_1 + \cdots + e_nA_n \succ 0$

Example (Brändén)

There exists $f \in \mathbb{R}[x_1, \ldots, x_8]$ hyperbolic but no symmetric matrices A_1, \ldots, A_8 with $f = \det(A_1 x_1 + \cdots + A_8 x_8)$ and $e_1 A_1 + \cdots + e_8 A_8 \succ 0$

The Lax conjecture

Examples of hyperbolic polynomials

- Elementary Symmetric polynomials $f = \sum x_i, \sum x_i x_j, \ldots$
- Derivatives along hyperbolic directions: *f* hyperb. $\Rightarrow \sum e_i \frac{\partial f}{\partial x_i}$ hyperb.
- $f = \det(A_1x_1 + \cdots + A_nx_n)$, where $\exists e \text{ with } e_1A_1 + \cdots + e_nA_n \succ 0$

Example (Brändén)

There exists $f \in \mathbb{R}[x_1, \ldots, x_8]$ hyperbolic but no symmetric matrices A_1, \ldots, A_8 with $f = \det(A_1 x_1 + \cdots + A_8 x_8)$ and $e_1 A_1 + \cdots + e_8 A_8 \succ 0$

Generalized Lax conjecture

Every hyperbolicity cone is a **linear section** of the cone of PSD symmetric matrices, that is $\exists A_1, \ldots, A_n$ such that

$$\Lambda_+(f, e) = \{x \in \mathbb{R}^n : A_1x_1 + \ldots + A_nx_n \succeq 0\}$$

If the conjecture holds, then HP coincides with SDP.

From hyperbolic PDE theory

The Cauchy problem

(given $f \in \mathbb{R}[x]_{\leq d}$ and $\Omega \subset \mathbb{R}^n$ open):

Given $p \in C^{\infty}(\Omega)$ compute $u \in C^{\infty}(\Omega)$ such that $f(\partial_1, \ldots, \partial_n)u = p$.

Theorem (Lax, Mizohata)

Decompose $f = \sum_{i \le d} f_i$ with $f_i \in \mathbb{R}[x]_i$. If the Cauchy problem is well-posed then f_d is hyperbolic.

From hyperbolic PDE theory

The Cauchy problem

(given $f \in \mathbb{R}[x]_{\leq d}$ and $\Omega \subset \mathbb{R}^n$ open):

Given $p \in C^{\infty}(\Omega)$ compute $u \in C^{\infty}(\Omega)$ such that $f(\partial_1, \ldots, \partial_n)u = p$.

Theorem (Lax, Mizohata)

Decompose $f = \sum_{i \leq d} f_i$ with $f_i \in \mathbb{R}[x]_i$. If the Cauchy problem is well-posed then f_d is hyperbolic.

EX: The Wave operator $(\partial_t^2 - \sum_i \partial_i^2) u = p$ corresponds to the polynomial

$$f = x_{n+1}^2 - \sum_{i=1}^n x_i^2$$

hyperbolic in direction e = (1, 0, ..., 0). Its hyp. cone is the **second-order** (or Lorentz) cone

$$\lambda_+(f,(1,0,\ldots,0)) = \{x \in \mathbb{R}^{n+1} : x_{n+1} \ge \sqrt{x_1^2 + \cdots + x_n^2}\}$$

Problem 1 (Hyperbolic Programming). Given $f \in \mathbb{R}[x]_d$ hyperbolic in dir. *e*, and ℓ linear, solve

 $\inf\{\ell(a): a \in \Lambda_+(f, e)\}$

(1)

Problem 1 (Hyperbolic Programming). Given $f \in \mathbb{R}[x]_d$ hyperbolic in dir. *e*, and ℓ linear, solve

 $\inf\{\ell(a): a \in \Lambda_+(f, e)\}$

(1)

Multiplicity: For $a \in \mathbb{R}^n$, we define

 $mult(a) := multiplicity of 0 as root of <math>ch_a(t) = f(te - a)$

Multiplicity set: For $m \leq d$, $\Gamma_m = \{a \in \mathbb{R}^n : \text{mult}(a) \geq m\}$

Problem 1 (Hyperbolic Programming). Given $f \in \mathbb{R}[x]_d$ hyperbolic in dir. *e*, and ℓ linear, solve

$$\inf\{\ell(a): a \in \Lambda_+(f, e)\}$$

(1)

Multiplicity: For $a \in \mathbb{R}^n$, we define

 $mult(a) := multiplicity of 0 as root of <math>ch_a(t) = f(te - a)$

Multiplicity set: For $m \leq d$, $\Gamma_m = \{a \in \mathbb{R}^n : \text{mult}(a) \geq m\}$

Remark: The set Γ_m is **real algebraic**. Indeed, if $\operatorname{ch}_a(t) = t^d + g_1(a)t^{d-1} + \dots + g_{d-1}(a)t + g_d(a)$ then $\Gamma_m = \{a : g_i(a) = 0, i \ge d - m + 1\}$

Problem 1 (Hyperbolic Programming). Given $f \in \mathbb{R}[x]_d$ hyperbolic in dir. *e*, and ℓ linear, solve

$$\inf\{\ell(a): a \in \Lambda_+(f, e)\}$$

(1)

Multiplicity: For $a \in \mathbb{R}^n$, we define

 $mult(a) := multiplicity of 0 as root of <math>ch_a(t) = f(te - a)$

Multiplicity set: For $m \leq d$, $\Gamma_m = \{a \in \mathbb{R}^n : \text{mult}(a) \geq m\}$

Remark: The set Γ_m is **real algebraic**. Indeed, if $\operatorname{ch}_a(t) = t^d + g_1(a)t^{d-1} + \dots + g_{d-1}(a)t + g_d(a)$ then $\Gamma_m = \{a : g_i(a) = 0, i \ge d - m + 1\}$

Theorem 1. If \overline{x} is a minimizer of (2), and $\overline{m} = \text{mult}(\overline{x})$, then \overline{x} is a local minimum of ℓ on $\Gamma_{\overline{m}}$

Sketch of Algorithm for Problem 1:

INPUT

 $f \in \mathbb{R}[x]_d, \boldsymbol{e} \in \mathbb{R}^n, \ell \in \mathbb{R}[x]_1$

OUTPUT

A finite set (parametrized by Rational Univ. Repres.) containing the minimizer **PROCEDURE**

For m = 0, ..., d do

- Compute the ideal $I_m = \operatorname{crit}(\ell, \Gamma_m)$ of critical points of ℓ on Γ_m
- Compute a Rational Univ. Repres. of I_m

Sketch of Algorithm for Problem 1:

INPUT

 $f \in \mathbb{R}[x]_d, \boldsymbol{e} \in \mathbb{R}^n, \ell \in \mathbb{R}[x]_1$

OUTPUT

A finite set (parametrized by Rational Univ. Repres.) containing the minimizer **PROCEDURE**

For m = 0, ..., d do

- Compute the ideal $I_m = \operatorname{crit}(\ell, \Gamma_m)$ of critical points of ℓ on Γ_m
- Compute a Rational Univ. Repres. of I_m

Problem 2 (Maximum multiplicity).

Given $f \in \mathbb{R}[x]_d$ hyperbolic in dir. *e*, solve the *non-convex* opt. prob.:

$$\max\{ \operatorname{mult}(a) : a \in \Lambda_+(f, e) \}$$
(2)

Sketch of Algorithm for Problem 1:

INPUT

 $f \in \mathbb{R}[x]_d, \boldsymbol{e} \in \mathbb{R}^n, \ell \in \mathbb{R}[x]_1$

OUTPUT

A finite set (parametrized by Rational Univ. Repres.) containing the minimizer **PROCEDURE**

For m = 0, ..., d do

- Compute the ideal $I_m = \operatorname{crit}(\ell, \Gamma_m)$ of critical points of ℓ on Γ_m
- Compute a Rational Univ. Repres. of I_m

Problem 2 (Maximum multiplicity).

Given $f \in \mathbb{R}[x]_d$ hyperbolic in dir. *e*, solve the *non-convex* opt. prob.:

$$\max\{ \operatorname{mult}(a) : a \in \Lambda_+(f, e) \}$$
(2)

Theorem 2. Suppose $m^* = \max(\operatorname{mult}(a))$ in $\Lambda_+(f, e)$. Then one of the real connected components of Γ_{m^*} is a subset of $\Lambda_+(f, e)$.

The special case of LMI/SDP

$$f = \det(\mathbf{A}(x))$$
 with $A(x) = x_1A_1 + \cdots + x_nA_n$

- ► $\Lambda_+(f, e) = \{x \in \mathbb{R}^n : \mathbf{A}(x) \succeq 0\}$ (HP reduces to an SDP)
- $\operatorname{mult}(a) \equiv \operatorname{corank}(A(a)).$
- ▶ Multiplicity set \leftrightarrow Determinantal variety $\Gamma_m = \{x \in \mathbb{R}^n : \operatorname{rank} \mathbf{A}(x) \leq d m\}$

Optimality conditions:

$$x \in \Gamma_m \iff \operatorname{rank} \mathbf{A}(x) \le d - m \iff \mathbf{A}(\mathbf{x}) \mathbf{Y}(\mathbf{y}) = \mathbf{0}$$

The special case of LMI/SDP

$$f = \det(\mathbf{A}(x))$$
 with $A(x) = x_1A_1 + \cdots + x_nA_n$

- ► $\Lambda_+(f, e) = \{x \in \mathbb{R}^n : \mathbf{A}(x) \succeq 0\}$ (HP reduces to an SDP)
- $\operatorname{mult}(a) \equiv \operatorname{corank}(A(a)).$
- ▶ Multiplicity set \leftrightarrow Determinantal variety $\Gamma_m = \{x \in \mathbb{R}^n : \operatorname{rank} \mathbf{A}(x) \leq d m\}$

Optimality conditions:

$$x \in \Gamma_m \iff \operatorname{rank} \mathbf{A}(x) \le d - m \iff \mathbf{A}(\mathbf{x}) \mathbf{Y}(\mathbf{y}) = \mathbf{0}$$

Henrion, N., Safey El Din (2015-2016)Exact algorithms for linear matrix inequalities: $A(x) \succeq 0$ N. (ISSAC 2016)Rank-constrained SDP(poly-time if n or d = size(A) is fixed)SPECTRA: Maple library for linear matrix inequalities

Work in progress!

Can we get the same complexity bounds for general hyperbolic polynomials?

Renegar's derivative relaxations

Fundamental remark:

 $f \in \mathbb{R}[x]_d$ hyperbolic in direction $e \Rightarrow D_e f = \sum_i e_i \frac{\partial f}{\partial x_i}$ still hyperbolic

This gives a nested sequence of convex hyperbolicity cones:

$$\Lambda_+(f, e) \subset \Lambda_+(D_e f, e) \subset \cdots \subset \Lambda_+(D_e^{(n-1)}f, e)$$

(the last one being a half-space), giving a sequence of *lower bounds* for the linear function to optimize:

$$\inf_{\Lambda_+(f,e)} \ell(a) \geq \inf_{\Lambda_+(D_e^{f,e)}} \ell(a) \geq \cdots \geq \inf_{\Lambda_+(D_e^{(d-1)}f,e)} \ell(a)$$

Renegar's derivative relaxations

Fundamental remark:

 $f \in \mathbb{R}[x]_d$ hyperbolic in direction $e \Rightarrow D_e f = \sum_i e_i \frac{\partial f}{\partial x_i}$ still hyperbolic

This gives a nested sequence of convex hyperbolicity cones:

$$\Lambda_+(f, e) \subset \Lambda_+(D_e f, e) \subset \cdots \subset \Lambda_+(D_e^{(n-1)}f, e)$$

(the last one being a half-space), giving a sequence of *lower bounds* for the linear function to optimize:

$$\inf_{\Lambda_+(f,e)} \ell(a) \geq \inf_{\Lambda_+(D_e^{f,e)}} \ell(a) \geq \cdots \geq \inf_{\Lambda_+(D_e^{(d-1)}_{f,e)}} \ell(a)$$

Why Renegar's method is useful from a computational viewpoint:

- At each step of the relaxation, the **degree** of the polynomial **decreses** by 1
- One of the Λ₊(D_e^(j)f, e) could be a section of the PSD cone (solution set of a LMI), in which case a lower bound can be computed by solving a *single SDP*.

N-ellipse

Given *N* points P_1, \ldots, P_n in \mathbb{R}^2 , and $D \in \mathbb{R}_+$. The *N*-ellipse is the set \mathcal{E}_N of $Q \in \mathbb{R}^2$ satisfying

$$\sum_{i=1}^{N} \operatorname{dist}(Q, P_i) = D.$$

Fact: The polynomial f vanishing on the boundary of \mathcal{E}_N is *hyperbolic* (for all N, for general P_i).

Remark! The degree of f is 2^N .

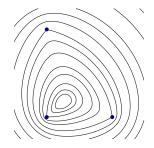


Figure: 3–ellipse for many *D*

N-ellipse

Given *N* points P_1, \ldots, P_n in \mathbb{R}^2 , and $D \in \mathbb{R}_+$. The *N*-ellipse is the set \mathcal{E}_N of $Q \in \mathbb{R}^2$ satisfying

$$\sum_{i=1}^{N} \operatorname{dist}(Q, P_i) = D.$$

Fact: The polynomial f vanishing on the boundary of \mathcal{E}_N is *hyperbolic* (for all N, for general P_i).

Remark! The degree of f is 2^N .

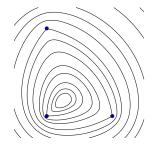


Figure: 3-ellipse for many D

For N = 3, $P_1 = (0, 4)$, $P_2 = (0, 0)$, $P_3 = (3, 0)$ (using Renegar's derivatives) :

k	$\approx x^*$	<i>m</i> *	$\ell(x^*)$	Degree of ex. repr.
0	(0.750, 0.000, 0.250)	2	5.500000000	56
1	(0.759, -0.018, 0.258)	1	5.499158216	42
2	(0.797, -0.051, 0.250)	1	5.456196445	30
3	(0.862, -0.116, 0.254)	1	5.392044926	20
4	(0.981, -0.254, 0.273)	1	5.292250029	12
5	(1.336, -0.762, 0.426)	1	5.090555573	6

Pre-print arXiv:1612.07340 (2016)

[N., Plaumann] Symbolic computation in hyperbolic programming

Conclusions

- An exact algorithm for hyperbolic programming
- We can compute the maximum multiplicity on a hyp. cone $\Lambda_+(f, e)$
- Combined with Renegar derivatives, one can certify lower bounds for HP

Questions/Perspectives

- Extend complexity bounds from SDP to HP ($poly(\cdot)$ when *n* or *d* is fixed?)
- Hyperbolicity test? Complexity of determinantal representations?

Merci

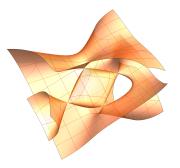


Figure: A non-determinantal quartic hyperbolic surface