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Hyperbolic polynomials

Definition of hyperbolic polynomial

f ∈ R[x ]d is hyperbolic w.r.t. e = (e1, . . . , en) ∈ Rn if
I f (e) 6= 0 (we suppose w.l.o.g. f (e) = 1)
I ∀ a ∈ Rn t 7→ cha(t) := f (t e − a) has only real roots

If such e exists, f is called a hyperbolic polynomial.

Fundamental examples:

(1) Products of real linear forms: f = x1 · · · xd

For e = 1 = (1, . . . , 1) cha(t) = (t − a1) · · · (t − ad )

(2) Symmetric determinant: f = det(X ), X symmetric matrix
For e = Id cha(t) is the characteristic polynomial of a ∈ Sd (R)

Convex optimization: (1) Linear Programming and (2) Semidefinite Programming
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Hyperbolicity cones

Definition of hyperbolicity cone

The hyperbolicity cone of f ∈ R[x ]d (w.r.t. e) is

Λ+(f , e) = {a ∈ Rn : cha(t) = 0⇒ t ≥ 0}

Base-cases:

(1) For f = x1 · · · xd , e = 1 : Λ+(f , 1) = R
n
+ (LP)

(2) f = det(X ), e = Id : Λ+(f , Id ) = PSD cone (SDP)

(3) General case (here d = 4) :

R
3 P2

A hierarchy of convex opt. problems:

Linear Programming (LP)
⇓

Semidefinite Programming (SDP)
⇓

Hyperbolic Programming (HP)

Can we design Algebraic/Exact methods?
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The Lax conjecture

Examples of hyperbolic polynomials
I Elementary Symmetric polynomials f =

∑
xi ,

∑
xixj , . . .

I Derivatives along hyperbolic directions: f hyperb. ⇒
∑

ei
∂f
∂xi

hyperb.
I f = det(A1x1 + · · ·+ Anxn), where ∃e with e1A1 + · · ·+ enAn � 0

Example (Brändén)
There exists f ∈ R[x1, . . . , x8] hyperbolic but no symmetric matrices A1, . . . ,A8

with f = det(A1x1 + · · ·+ A8x8) and e1A1 + · · ·+ e8A8 � 0

Generalized Lax conjecture

Every hyperbolicity cone is a linear section
of the cone of PSD symmetric matrices,
that is ∃A1, . . . ,An such that

Λ+(f , e) = {x ∈ Rn : A1x1+. . .+Anxn � 0}

If the conjecture holds, then HP coincides with SDP.
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Origin
From hyperbolic PDE theory

The Cauchy problem (given f ∈ R[x ]≤d and Ω ⊂ Rn open) :

Given p ∈ C∞(Ω) compute u ∈ C∞(Ω) such that f (∂1, . . . , ∂n)u = p.

Theorem (Lax, Mizohata)
Decompose f =

∑
i≤d fi with fi ∈ R[x ]i .

If the Cauchy problem is well-posed then fd is hyperbolic.

EX: The Wave operator (∂2
t −

∑
i ∂

2
i )u = p corresponds to the polynomial

f = x2
n+1 −

n∑
i=1

x2
i

hyperbolic in direction e = (1, 0, . . . , 0). Its hyp. cone is the second-order (or
Lorentz) cone

λ+(f , (1, 0, . . . , 0)) = {x ∈ Rn+1 : xn+1 ≥
√

x2
1 + · · ·+ x2

n}
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Optimization over Multiplicity sets

Problem 1 (Hyperbolic Programming).
Given f ∈ R[x ]d hyperbolic in dir. e, and ` linear, solve

inf{`(a) : a ∈ Λ+(f , e)} (1)

Multiplicity: For a ∈ Rn, we define

mult(a) := multiplicity of 0 as root of cha(t) = f (te − a)

Multiplicity set: For m ≤ d , Γm = {a ∈ Rn : mult(a) ≥ m}

Remark: The set Γm is real algebraic.
Indeed, if cha(t) = td + g1(a)td−1 + · · ·+ gd−1(a)t + gd (a) then

Γm = {a : gi (a) = 0, i ≥ d −m + 1}

Theorem 1. If x is a minimizer of (2), and m = mult(x), then x is a local
minimum of ` on Γm
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Optimization over Multiplicity sets

Sketch of Algorithm for Problem 1:
INPUT

f ∈ R[x ]d , e ∈ Rn, ` ∈ R[x ]1

OUTPUT
A finite set (parametrized by Rational Univ. Repres.) containing the minimizer

PROCEDURE
For m = 0, . . . , d do
I Compute the ideal Im = crit(`, Γm) of critical points of ` on Γm
I Compute a Rational Univ. Repres. of Im

Problem 2 (Maximum multiplicity).
Given f ∈ R[x ]d hyperbolic in dir. e, solve the non-convex opt. prob.:

max{mult(a) : a ∈ Λ+(f , e)} (2)

Theorem 2. Suppose m∗ = max(mult(a)) in Λ+(f , e). Then one of the real
connected components of Γm∗ is a subset of Λ+(f , e).

5 / 10



Optimization over Multiplicity sets

Sketch of Algorithm for Problem 1:
INPUT

f ∈ R[x ]d , e ∈ Rn, ` ∈ R[x ]1

OUTPUT
A finite set (parametrized by Rational Univ. Repres.) containing the minimizer

PROCEDURE
For m = 0, . . . , d do
I Compute the ideal Im = crit(`, Γm) of critical points of ` on Γm
I Compute a Rational Univ. Repres. of Im

Problem 2 (Maximum multiplicity).
Given f ∈ R[x ]d hyperbolic in dir. e, solve the non-convex opt. prob.:

max{mult(a) : a ∈ Λ+(f , e)} (2)

Theorem 2. Suppose m∗ = max(mult(a)) in Λ+(f , e). Then one of the real
connected components of Γm∗ is a subset of Λ+(f , e).

5 / 10



Optimization over Multiplicity sets

Sketch of Algorithm for Problem 1:
INPUT

f ∈ R[x ]d , e ∈ Rn, ` ∈ R[x ]1

OUTPUT
A finite set (parametrized by Rational Univ. Repres.) containing the minimizer

PROCEDURE
For m = 0, . . . , d do
I Compute the ideal Im = crit(`, Γm) of critical points of ` on Γm
I Compute a Rational Univ. Repres. of Im

Problem 2 (Maximum multiplicity).
Given f ∈ R[x ]d hyperbolic in dir. e, solve the non-convex opt. prob.:

max{mult(a) : a ∈ Λ+(f , e)} (2)

Theorem 2. Suppose m∗ = max(mult(a)) in Λ+(f , e). Then one of the real
connected components of Γm∗ is a subset of Λ+(f , e).

5 / 10



The special case of LMI/SDP

f = det(A(x)) with A(x) = x1A1 + · · ·+ xnAn

I Λ+(f , e) = {x ∈ Rn : A(x) � 0} (HP reduces to an SDP)
I mult(a) ≡ corank(A(a)).
I Multiplicity set↔ Determinantal variety Γm = {x ∈ Rn : rankA(x) ≤ d −m}

Optimality conditions:

x ∈ Γm ⇐⇒ rankA(x) ≤ d −m⇐⇒ A(x)Y(y) = 0

Henrion, N., Safey El Din (2015-2016)
Exact algorithms for linear matrix inequalities: A(x) � 0
N. (ISSAC 2016)
Rank-constrained SDP (poly-time if n or d = size(A) is fixed)

SPECTRA: Maple library for linear matrix inequalities

Work in progress!
Can we get the same complexity bounds for general hyperbolic polynomials?
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Renegar’s derivative relaxations

Fundamental remark:

f ∈ R[x ]d hyperbolic in direction e ⇒ Def =
∑

i ei
∂f
∂xi

still hyperbolic

This gives a nested sequence of convex hyperbolicity cones:

Λ+(f , e) ⊂ Λ+(Def , e) ⊂ · · · ⊂ Λ+(D(n−1)
e f , e)

(the last one being a half-space), giving a sequence of lower bounds for the linear
function to optimize:

inf
Λ+(f ,e)

`(a) ≥ inf
Λ+(De f ,e)

`(a) ≥ · · · ≥ inf
Λ+(D(d−1)

e f ,e)

`(a)

Why Renegar’s method is useful from a computational viewpoint:
I At each step of the relaxation, the degree of the polynomial decreses by 1

I One of the Λ+(D(j)
e f , e) could be a section of the PSD cone (solution set of a

LMI), in which case a lower bound can be computed by solving a single SDP.
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N-ellipse
Given N points P1, . . . ,Pn in R2, and D ∈ R+.
The N-ellipse is the set EN of Q ∈ R2 satisfying

N∑
i=1

dist(Q,Pi ) = D.

Fact: The polynomial f vanishing on the boundary
of EN is hyperbolic (for all N , for general Pi ).

Remark! The degree of f is 2N .
Figure: 3−ellipse for many D

For N = 3, P1 = (0, 4),P2 = (0, 0),P3 = (3, 0) (using Renegar’s derivatives) :

k ≈ x∗ m∗ `(x∗) Degree of ex. repr.
0 (0.750, 0.000, 0.250) 2 5.500000000 56
1 (0.759,−0.018, 0.258) 1 5.499158216 42
2 (0.797,−0.051, 0.250) 1 5.456196445 30
3 (0.862,−0.116, 0.254) 1 5.392044926 20
4 (0.981,−0.254, 0.273) 1 5.292250029 12
5 (1.336,−0.762, 0.426) 1 5.090555573 6
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Pre-print arXiv:1612.07340 (2016)
[N., Plaumann] Symbolic computation in hyperbolic programming

Conclusions

I An exact algorithm for hyperbolic programming
I We can compute the maximum multiplicity on a hyp. cone Λ+(f , e)

I Combined with Renegar derivatives, one can certify lower bounds for HP

Questions/Perspectives

I Extend complexity bounds from SDP to HP (poly(·) when n or d is fixed?)
I Hyperbolicity test? Complexity of determinantal representations?
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Merci

Figure: A non-determinantal quartic hyperbolic surface
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