lsochronous centers of polynomial Hamiltonian systems and correction of vector fields

Jordy Palafox (A joint work with Jacky Cresson)

Journées Nationales de Calcul Formel 2017 CIRM

16-20 January 2017

Jordy Palafox - JNCF 2017 1 / 32

Introduction

- Isochronous centers and Jarque-Villadelprat's conjecture
- Our approach : the Mould Calculus

2 Progress about the conjecture

- General notations
- Our results about the conjecture
- Illustrations of our theorems

Proofs of the theorems

- Prepared form of vector fields and Mould Expansion
- Correction of a vector field
- Proof of our Theorems

Introduction

Progress about the conjecture Proofs of the theorems lsochronous centers and Jarque-Villadelprat's conjecture Our approach : the Mould Calculus

Introduction

Jordy Palafox - JNCF 2017 3 / 32

Isochronous centers and Jarque-Villadelprat's conjecture Our approach : the Mould Calculus

We consider the **complex representation** of a *real planar vector field* with a **center** in 0 denoted by

$$X_{lin} = i(x\partial_x - y\partial_y)$$

with $x, y \in \mathbb{C}$ with $y = \bar{x}$.

Figure – The equilibrium point 0 is a center.

Jordy Palafox - JNCF 2017 4 / 32

Which properties are preserved by a polynomial perturbation of this field ?

$$X = X_{lin} + P(x, y)\partial_x + Q(x, y)\partial_y$$

Which properties are preserved by a polynomial perturbation of this field?

$$X = X_{lin} + P(x, y)\partial_x + Q(x, y)\partial_y$$

The problem of center

Which conditions on P and Q are necessary to preserve the property to be a center ?

Which properties are preserved by a polynomial perturbation of this field?

$$X = X_{lin} + P(x, y)\partial_x + Q(x, y)\partial_y$$

The problem of center

Which conditions on P and Q are necessary to preserve the property to be a center ?

• A center is isochronous if all the orbits have the same period.

Which properties are preserved by a polynomial perturbation of this field?

$$X = X_{lin} + P(x, y)\partial_x + Q(x, y)\partial_y$$

The problem of center

Which conditions on P and Q are necessary to preserve the property to be a center ?

• A center is isochronous if all the orbits have the same period.

The problem of isochronous center

Which conditions on P and Q are necessary to preserve the isochronicity ?

Jarque-Villadelprat's conjecture (2002)¹

Every center of a real planar polynomial Hamiltonian system of even degree is nonisochronous.

^{1.} X.Jarque and J.Villadelprat, "*Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four*", Journal of Differential Equations 180, 334–373, 2002

Jarque-Villadelprat's conjecture (2002)¹

Every center of a real planar polynomial Hamiltonian system of even degree is nonisochronous.

• Loud (1964) : true for quadratic systems ,

^{1.} X.Jarque and J.Villadelprat, "Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four", Journal of Differential Equations 180, 334-373, 2002

Jarque-Villadelprat's conjecture (2002)¹

Every center of a real planar polynomial Hamiltonian system of even degree is nonisochronous.

- Loud (1964) : true for quadratic systems ,
- B.Schuman (2001) : true in the homogeneous case,

^{1.} X.Jarque and J.Villadelprat, "Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four", Journal of Differential Equations 180, 334-373, 2002

Jarque-Villadelprat's conjecture (2002)¹

Every center of a real planar polynomial Hamiltonian system of even degree is nonisochronous.

- Loud (1964) : true for quadratic systems ,
- B.Schuman (2001) : true in the homogeneous case,
- Jarque-Villadelprat (2002) : true in the quartic case,

^{1.} X.Jarque and J.Villadelprat, "Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four", Journal of Differential Equations 180, 334-373, 2002

Jarque-Villadelprat's conjecture (2002)¹

Every center of a real planar polynomial Hamiltonian system of even degree is nonisochronous.

- Loud (1964) : true for quadratic systems ,
- B.Schuman (2001) : true in the homogeneous case,
- Jarque-Villadelprat (2002) : true in the quartic case,
- Other cases : the conjecture is open !

1. X.Jarque and J.Villadelprat, "Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four", Journal of Differential Equations 180, 334-373, 2002

Isochronous centers and Jarque-Villadelprat's conjecture Our approach : the Mould Calculus

Condition of Isochronicity²

The isochronicity is equivalent to the linearizability.

2. Sabatini and Chavarriga , "A survey of Isochronous centers", Qualitative Theory of Dynamical Systems 1 (1999)

Jordy Palafox - JNCF 2017 7 / 32

Isochronous centers and Jarque-Villadelprat's conjecture Our approach : the Mould Calculus

Condition of Isochronicity²

The isochronicity is equivalent to the linearizability.

How to study the linearizability of a vector field?

2. Sabatini and Chavarriga , "A survey of Isochronous centers", Qualitative Theory of Dynamical Systems 1 (1999)

Jordy Palafox - JNCF 2017 7 / 32

 $\mathsf{lsochronous}\xspace$ centers and $\mathsf{Jarque-Villadelprat}\xspace$ s conjecture $\mathsf{Our}\xspace$ approach : the Mould Calculus

Correction and mould calculus

• Formalism : Mould calculus introduced by J.Ecalle in 70's.

3. J.Ecalle and B.Vallet, "Correction and linearization of resonant vector fields and diffeomorphisms", Math. Z. 229, 249-318 (1998)

Jordy Palafox - JNCF 2017 8 / 32

Correction and mould calculus

- Formalism : Mould calculus introduced by J.Ecalle in 70's.
- <u>Correction</u> of a vector field : a formal vector field defined by J.Ecalle and B.Vallet³ :

3. J.Ecalle and B.Vallet, "Correction and linearization of resonant vector fields and diffeomorphisms", Math. Z. 229, 249-318 (1998)

Jordy Palafox - JNCF 2017 8 / 32

Correction and mould calculus

- Formalism : Mould calculus introduced by J.Ecalle in 70's.
- <u>Correction</u> of a vector field : a formal vector field defined by J.Ecalle and B.Vallet³ :

Definition of Correction

• X analytic vector field and X_{lin} = linear part of X

Find a vector field Z of the following commuting problem :

• X - Z formally conjugate to X_{lin} , • $[X_{lin}, Z] = 0$,

The solution Z is the **correction** of X.

Jordy Palafox - JNCF 2017 8 / 32

^{3.} J.Ecalle and B.Vallet, "Correction and linearization of resonant vector fields and diffeomorphisms", Math. Z. 229, 249-318 (1998)

Isochronous centers and Jarque-Villadelprat's conjecture Our approach : the Mould Calculus

Criterion of linearizability [Ecalle, Vallet]

A vector field is linearizable if and only if its correction is zero.

 $\mathsf{lsochronous}\xspace$ centers and $\mathsf{Jarque-Villadelprat}\xspace$ s conjecture $\mathsf{Our}\xspace$ approach : the Mould Calculus

Criterion of linearizability [Ecalle, Vallet]

A vector field is linearizable if and only if its correction is zero.

<u>The interest of this formalism</u> :

• An algorithmic and explicit way to compute the conditions of linearizability.

Criterion of linearizability [Ecalle, Vallet]

A vector field is linearizable if and only if its correction is zero.

<u>The interest of this formalism</u> :

- An algorithmic and explicit way to compute the conditions of linearizability.
- To distinguish what depends on the coefficients of P and Q and what is universal for the linearizability.

Introduction General notations
Progress about the conjecture
Proofs of the theorems
Illustrations of our theorems

Our results

Introduction General notations Progress about the conjecture Proofs of the theorems United States of the set of the se

We consider a polynomial perturbation as above :

$$X = X_{lin} + \sum_{r=k}^{l} X_r$$

with

•
$$X_r = P_r(x, y)\partial_x + Q_r(x, y)\partial_y$$
,
• $P_r(x, y) = \sum_{j=0}^r p_{r-j-1,j}x^{r-j}y^j$, $Q_r(x, y) = \sum_{j=0}^r q_{r-j,j-1}x^{r-j}y^j$.

• $p_{r-j-1,j}, \ q_{r-j,j-1} \in \mathbb{C}$ with the following conditions :

Real system condition : $p_{j,k} = \bar{q}_{k,j}$ with j + k = r - 1

Hamiltonian condition :
$$p_{j-1,r-j} = -\frac{r-j+1}{j}q_{j-1,r-j}$$
 with $j = 1, ...r$.

Theorem 1 [P., Cresson]

Let X be a real Hamiltonian vector field of even degree 2n given by :

$$X = X_{lin} + \sum_{r=2}^{2n} X_r$$

If X satisfies one of the following conditions :

• there exists
$$1 \le k < n-1$$
 such that $p_{i,i} = 0$ for $i = 1, ..., k-1$ and $Im(p_{k,k}) > 0$,

2
$$p_{i,i} = 0$$
 for $i = 1, ..., n - 1$,

Then the vector field X is nonisochronous.

General notations Our results about the conjecture Illustrations of our theorems

Theorem 2 [P., Cresson]

A real Hamiltonian vector field of the form :

$$X = X_{lin} + X_k + \ldots + X_{2n},$$

for $k \ge 2$ and $n \le k - 1$, is nonisochronous.

General notations Our results about the conjecture Illustrations of our theorems

By the Theorem 1, we have :

•
$$X = X_{lin} + X_2$$
,

General notations Our results about the conjecture Illustrations of our theorems

By the Theorem 1, we have :

•
$$X = X_{lin} + X_2$$
,

•
$$X = X_{lin} + X_2 + X_3 + X_4$$
 with $Im(p_{1,1}) > 0$,

•
$$X = X_{lin} + X_2 + X_3 + X_4 + X_5 + X_6$$
 with $Im(p_{1,1}) > 0$ or $p_{1,1} = 0$ and $Im(p_{2,2}) > 0$

• etc...

are nonisochronous.

General notations Our results about the conjecture Illustrations of our theorems

By the **Theorem 1**, we have :

•
$$X = X_{lin} + X_2$$
,

•
$$X = X_{lin} + X_2 + X_3 + X_4$$
 with $Im(p_{1,1}) > 0$,

•
$$X = X_{lin} + X_2 + X_3 + X_4 + X_5 + X_6$$
 with $Im(p_{1,1}) > 0$ or $p_{1,1} = 0$ and $Im(p_{2,2}) > 0$

etc...

are nonisochronous.

By the Theorem 2, we have :

•
$$X = X_{lin} + X_2$$

General notations Our results about the conjecture Illustrations of our theorems

By the **Theorem 1**, we have :

•
$$X = X_{lin} + X_2$$
,

•
$$X = X_{lin} + X_2 + X_3 + X_4$$
 with $Im(p_{1,1}) > 0$,

•
$$X = X_{lin} + X_2 + X_3 + X_4 + X_5 + X_6$$
 with $Im(p_{1,1}) > 0$ or $p_{1,1} = 0$ and $Im(p_{2,2}) > 0$

are nonisochronous.

By the Theorem 2, we have :

•
$$\left| \begin{array}{c} X = X_{lin} + X_2 \end{array} \right|$$
,
• $X = X_{lin} + X_3 + X_4$,
• $X = X_{lin} + X_4 + X_5 + X_6$,
• $X = X_{lin} + \sum_{47}^{92} X_r$

• etc...

are nonisochronous!

Jordy Palafox - JNCF 2017 14 / 32

Introduction Prepared form of vector fields and Mould Expansion Progress about the conjecture Correction of a vector field Proofs of the theorems Proof of our Theorems

Proofs of the theorems

Introduction	Prepared form of vector fields and Mould Expansion
Progress about the conjecture	Correction of a vector field
Proofs of the theorems	Proof of our Theorems

Introduction	Prepared form of vector fields and Mould Expansion
Progress about the conjecture	Correction of a vector field
Proofs of the theorems	Proof of our Theorems

• Prepared form of a vector field and Mould expansion

- Prepared form of a vector field and Mould expansion
- Study of the Correction by depth

- Prepared form of a vector field and Mould expansion
- Study of the Correction by depth
- Proofs of the theorems

Prepared form of a vector field and Mould expansion

We consider a vector field $X = X_{lin} + \sum X_r$. The *prepared form* of X is :

$$X = X_{lin} + \sum_{n \in A(X)} B_n,$$

where

Prepared form of a vector field and Mould expansion

We consider a vector field $X = X_{lin} + \sum X_r$. The *prepared form* of X is :

$$X = X_{lin} + \sum_{n \in A(X)} B_n,$$

where

• Letter :
$$n = (n^1, n^2) \in A(X)$$
,

Prepared form of a vector field and Mould expansion

We consider a vector field $X = X_{lin} + \sum X_r$. The *prepared form* of X is :

$$X = X_{lin} + \sum_{n \in A(X)} B_n,$$

where

- Letter : $n = (n^1, n^2) \in A(X)$,
- Alphabet : $A(X) \subset \mathbb{Z}^2$,

Prepared form of a vector field and Mould expansion

We consider a vector field $X = X_{lin} + \sum X_r$. The *prepared form* of X is :

$$X = X_{lin} + \sum_{n \in A(X)} B_n,$$

where

- Letter : $n = (n^1, n^2) \in A(X)$,
- Alphabet : $A(X) \subset \mathbb{Z}^2$,
- Homogeneous differential operator : B_n satisfying $D_n(m^1, m^2) = 0, m^{1+n^1}, m^{2+n^2} = 0, n = 0$

$$B_n(x^{m^1}y^{m^2}) = \beta_n x^{m^1+n^1} y^{m^2+n^2} \text{ with } \beta_n \in \mathbb{C}$$

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

Example of decomposition

We consider the following vector field :

$$X = X_{lin} + X_2$$

where

e
$$X_2 = (p_{1,0}x^2 + p_{0,1}xy + p_{-1,2}y^2) \partial_x + (q_{-1,2}x^2 + q_{1,0}xy + q_{0,1}y^2) \partial_y,$$

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

Example of decomposition

We consider the following vector field :

$$X = X_{lin} + X_2$$

re
$$X_2 = (p_{1,0}x^2 + p_{0,1}xy + p_{-1,2}y^2) \partial_x + (q_{-1,2}x^2 + q_{1,0}xy + q_{0,1}y^2) \partial_y,$$

The alphabet and the operators are given by :

•
$$B_{(1,0)} = x(p_{1,0}x\partial_x + p_{0,1}y\partial_y),$$

• $B_{(0,1)} = y(p_{0,1}x\partial_x + p_{0,1}y\partial_y),$
• $A(X) = \{(2,-1), (1,0), (0,1), (-1,2)\},$

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

Example of decomposition

We consider the following vector field :

$$X = X_{lin} + X_2$$

re
$$X_2 = (p_{1,0}x^2 + p_{0,1}xy + p_{-1,2}y^2) \partial_x + (q_{-1,2}x^2 + q_{1,0}xy + q_{0,1}y^2) \partial_y,$$

The alphabet and the operators are given by :

•
$$B_{(1,0)} = x(p_{1,0}x\partial_x + p_{0,1}y\partial_y),$$

• $B_{(0,1)} = y(p_{0,1}x\partial_x + p_{0,1}y\partial_y),$
• $A(X) = \{(2,-1), (1,0), (0,1), (-1,2)\},$

We write X as a series :

$$X = X_{lin} + \sum_{\mathbf{n} \in A^*(X)} I^{\mathbf{n}} B_{\mathbf{n}}$$

We write X as a series :

$$X = X_{lin} + \sum_{\mathbf{n} \in A^*(X)} I^{\mathbf{n}} B_{\mathbf{n}}$$

•
$$A^*(X)$$
 : set of words on $A(X)$,

We write X as a series :

$$X = X_{lin} + \sum_{\mathbf{n} \in A^*(X)} I^{\mathbf{n}} B_{\mathbf{n}}$$

- $A^*(X)$: set of words on A(X),
- $\mathbf{n} = n_1 \cdot \ldots \cdot n_r$ word by concatenation, with $n_i \in A(X)$,

We write X as a series :

$$X = X_{lin} + \sum_{\mathbf{n} \in A^*(X)} I^{\mathbf{n}} B_{\mathbf{n}}$$

- $A^*(X)$: set of words on A(X),
- $\mathbf{n} = n_1 \cdot \ldots \cdot n_r$ word by concatenation, with $n_i \in A(X)$,
- $\ell(\mathbf{n}) = r$ the length of the word \mathbf{n} ,

We write X as a series :

$$X = X_{lin} + \sum_{\mathbf{n} \in A^*(X)} I^{\mathbf{n}} B_{\mathbf{n}}$$

- $A^*(X)$: set of words on A(X),
- $\mathbf{n} = n_1 \cdot ... \cdot n_r$ word by concatenation, with $n_j \in A(X)$,
- $\ell(\mathbf{n}) = r$ the length of the word \mathbf{n} ,
- $B_{\mathbf{n}} = B_{n_1} \circ \cdots \circ B_{n_r}$, the usual composition of differential operators,

We write X as a series :

$$X = X_{lin} + \sum_{\mathbf{n} \in A^*(X)} I^{\mathbf{n}} B_{\mathbf{n}}$$

- $A^*(X)$: set of words on A(X),
- $\mathbf{n} = n_1 \cdot ... \cdot n_r$ word by concatenation, with $n_j \in A(X)$,

•
$$\ell(\mathbf{n}) = r$$
 the length of the word \mathbf{n}

- $B_n = B_{n_1} \circ \cdots \circ B_{n_r}$, the usual composition of differential operators,
- the coefficient I^{\bullet} is a <u>mould</u> : an application from $A^{*}(X)$ to \mathbb{C} .

We write X as a series :

$$X = X_{lin} + \sum_{\mathbf{n} \in A^*(X)} I^{\mathbf{n}} B_{\mathbf{n}}$$

where :

- $A^*(X)$: set of words on A(X),
- $\mathbf{n} = n_1 \cdot ... \cdot n_r$ word by concatenation, with $n_j \in A(X)$,

•
$$\ell(\mathbf{n}) = r$$
 the length of the word \mathbf{n}

- $B_n = B_{n_1} \circ \cdots \circ B_{n_r}$, the usual composition of differential operators,
- the coefficient I^{\bullet} is a <u>mould</u> : an application from $A^{*}(X)$ to \mathbb{C} .

This operation is called mould expansion.

Resonant letters and words

We denoted by $\lambda = (i, -i)$ the eigensystem of X_{lin} ,

Resonant letters and words

We denoted by $\lambda = (i, -i)$ the eigensystem of X_{lin} ,

• The weight of a letter $n = (n^1, n^2)$ is defined by :

$$\omega({\it n})=\langle {\it n},\lambda
angle$$
 ,

Resonant letters and words

We denoted by $\lambda = (i, -i)$ the eigensystem of X_{lin} ,

• The weight of a letter $n = (n^1, n^2)$ is defined by :

$$\omega({\it n})=\langle {\it n},\lambda
angle$$
 ,

• For a word $\mathbf{n} = n_1 \cdot \ldots \cdot n_r$,

$$\omega(\mathbf{n}) = \omega(n_1) + \ldots + \omega(n_r)$$

Resonant letters and words

We denoted by $\lambda = (i, -i)$ the eigensystem of X_{lin} ,

• The weight of a letter $n = (n^1, n^2)$ is defined by :

$$\omega({\it n})=\langle {\it n},\lambda
angle$$
 ,

• For a word
$$\mathbf{n} = n_1 \cdot ... \cdot n_r$$
,

$$\omega(\mathbf{n}) = \omega(n_1) + \ldots + \omega(n_r)$$

Resonant words

A word **n** is <u>resonant</u> if $\omega(\mathbf{n}) = 0$.

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

The correction and its mould

Theorem [Ecalle, Vallet]

The correction can be written :

$$Carr(X) = \sum_{\mathbf{n} \in A^{*}(X)} Carr^{\mathbf{n}} B_{\mathbf{n}} = \sum_{k \ge 1} \frac{1}{k} \sum_{\substack{\mathbf{n} \in A^{*}(X) \\ \ell(\mathbf{n}) = k}} Carr^{\mathbf{n}} [B_{\mathbf{n}}]$$

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

The correction and its mould

Theorem [Ecalle, Vallet]

The correction can be written :

$$Carr(X) = \sum_{\mathbf{n} \in A^*(X)} Carr^{\mathbf{n}} B_{\mathbf{n}} = \sum_{k \ge 1} \frac{1}{k} \sum_{\substack{\mathbf{n} \in A^*(X) \\ \ell(\mathbf{n}) = k}} Carr^{\mathbf{n}} [B_{\mathbf{n}}]$$

•
$$[B_{\mathbf{n}}] = [B_{n_1 \cdot \ldots \cdot n_r}] = [\ldots [[B_{n_1}, B_{n_2}], B_{n_3}], \ldots], B_{n_r}],$$

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

The correction and its mould

Theorem [Ecalle, Vallet]

The correction can be written :

$$Carr(X) = \sum_{\mathbf{n} \in A^*(X)} Carr^{\mathbf{n}} B_{\mathbf{n}} = \sum_{k \ge 1} \frac{1}{k} \sum_{\substack{\mathbf{n} \in A^*(X) \\ \ell(\mathbf{n}) = k}} Carr^{\mathbf{n}} [B_{\mathbf{n}}]$$

where :

•
$$[B_{\mathbf{n}}] = [B_{n_1 \cdot \ldots \cdot n_r}] = [\ldots [[B_{n_1}, B_{n_2}], B_{n_3}], \ldots], B_{n_r}],$$

• *Carr*• is the mould of the correction.

• The mould $Carr^{\bullet}$ is given for any word $\mathbf{n} = n_1 \cdot ... \cdot n_r$ by ⁴ :

^{4.} It is not a trivial formula : related to the notion of variance of vector fields, see J.Ecalle and B.Vallet, "*Correction and linearization of resonant vector fields and diffeomorphisms*", Math. Z. 229, 249-318 (1998)

• The mould $Carr^{\bullet}$ is given for any word $\mathbf{n} = n_1 \cdot ... \cdot n_r$ by ⁴: $\omega(n_1)Carr^{n_1 \cdot n_2 \cdot ... \cdot n_r} + Carr^{n_1 + n_2 \cdot n_3 \cdot ... \cdot n_r} = \sum_{n_1 \cdot \mathbf{b} \cdot \mathbf{c} = \mathbf{n}} Carr^{n_1 \cdot \mathbf{c}} Carr^{\mathbf{b}},$

^{4.} It is not a trivial formula : related to the notion of variance of vector fields, see J.Ecalle and B.Vallet, "*Correction and linearization of resonant vector fields and diffeomorphisms*", Math. Z. 229, 249-318 (1998)

- The mould $Carr^{\bullet}$ is given for any word $\mathbf{n} = n_1 \cdot ... \cdot n_r$ by ⁴: $\omega(n_1)Carr^{n_1 \cdot n_2 \cdot ... \cdot n_r} + Carr^{n_1 + n_2 \cdot n_3 \cdot ... \cdot n_r} = \sum_{n_1 \cdot \mathbf{b} \cdot \mathbf{c} = \mathbf{n}} Carr^{n_1 \cdot \mathbf{c}} Carr^{\mathbf{b}},$
- If **n** is not a resonant word, $Carr^{n} = 0$

^{4.} It is not a trivial formula : related to the notion of variance of vector fields, see J.Ecalle and B.Vallet, "*Correction and linearization of resonant vector fields and diffeomorphisms*", Math. Z. 229, 249-318 (1998)

• The mould
$$Carr^{\bullet}$$
 is given for any word $\mathbf{n} = n_1 \cdot ... \cdot n_r$ by ⁴:
 $\omega(n_1)Carr^{n_1 \cdot n_2 \cdot ... \cdot n_r} + Carr^{n_1 + n_2 \cdot n_3 \cdot ... \cdot n_r} = \sum_{n_1 \cdot \mathbf{b} \cdot \mathbf{c} = \mathbf{n}} Carr^{n_1 \cdot \mathbf{c}} Carr^{\mathbf{b}},$

• If **n** is not a resonant word, $Carr^{n} = 0$

For $\omega(\mathbf{n}) = 0$, • If $\ell(\mathbf{n}) = 1$, $Carr^{\mathbf{n}} = 1$, • If $\ell(\mathbf{n}) = 2$, $\mathbf{n} = n_1 \cdot n_2$, $Carr^{\mathbf{n}} = \frac{-1}{\omega(n_1)}$

^{4.} It is not a trivial formula : related to the notion of variance of vector fields, see J.Ecalle and B.Vallet, "*Correction and linearization of resonant vector fields and diffeomorphisms*", Math. Z. 229, 249-318 (1998)

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

New writing of the Correction

We introduce the notion of depth :

• The depth of a letter $n = (n^1, n^2)$ is

$$p(n)=n^1+n^2,$$

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

New writing of the Correction

We introduce the notion of depth :

• The depth of a letter $n = (n^1, n^2)$ is

$$p(n)=n^1+n^2,$$

• The depth of a word $\mathbf{n} = n_1 \cdot ... \cdot n_r$ is given by $p(\mathbf{n}) = p(n_1) + ... + p(n_r),$

New writing of the Correction

We introduce the notion of depth :

• The depth of a letter $\overline{n=(n^1,n^2)}$ is

$$p(n)=n^1+n^2,$$

• The depth of a word $\mathbf{n} = n_1 \cdot ... \cdot n_r$ is given by $p(\mathbf{n}) = p(n_1) + ... + p(n_r),$

 \Rightarrow We can rewrite the correction using the depth

New writing of the Correction

We introduce the notion of depth :

• The depth of a letter $\overline{n} = (n^1, n^2)$ is

$$p(n)=n^1+n^2,$$

• The depth of a word $\mathbf{n} = n_1 \cdot ... \cdot n_r$ is given by $p(\mathbf{n}) = p(n_1) + ... + p(n_r)$,

 \Rightarrow We can rewrite the correction using the depth

Correction via the depth

$$Carr(X) = \sum_{p \ge 1} Carr_p(X)$$
 with $Carr_p(X) = \sum_{\substack{\mathbf{n} \in A^*(X) \\ p(\mathbf{n}) = p}} \frac{1}{I(\mathbf{n})} Carr^{\mathbf{n}}[B_{\mathbf{n}}]$

Linearizability and main property

Criterion of linearizability

A vector field X as above is linearizable if and only if $Carr_p(X) = 0$ for all $p \ge 1$.

Linearizability and main property

Criterion of linearizability

A vector field X as above is linearizable if and only if $Carr_p(X) = 0$ for all $p \ge 1$.

Property of $Carr_p(X)$

For any odd integer p, $Carr_p(X) = 0$.

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

Main idea of the proofs

• We consider
$$X = X_{lin} + \sum_{r=k}^{2n} X_r$$
,

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

Main idea of the proofs

• We consider
$$X = X_{lin} + \sum_{r=k}^{2n} X_r$$
,

<u>Two cases</u> : k = 2l or k = 2l + 1.

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

Main idea of the proofs

• We consider
$$X = X_{lin} + \sum_{r=k}^{2n} X_r$$
,

<u>Two cases</u> : k = 2l or k = 2l + 1.

• How to calculate $Carr_p(X)$?

Vector field	X ₂₁	$X_{2/+1}$	 <i>X</i> _{2<i>n</i>}
Depth	2l - 1	21	 2 <i>n</i> – 1

Prepared form of vector fields and Mould Expansion Correction of a vector field **Proof of our Theorems**

Main idea of the proofs

• We consider
$$X = X_{lin} + \sum_{r=k}^{2n} X_r$$
,

<u>Two cases</u> : k = 2I or k = 2I + 1.

• How to calculate $Carr_p(X)$?

Vector field	X ₂₁	$X_{2/+1}$	 <i>X</i> _{2<i>n</i>}
Depth	2l - 1	27	 2 <i>n</i> – 1

For a given depth p, which X_r contributes to $Carr_p(X)$?

Prepared form of vector fields and Mould Expansion Correction of a vector field Proof of our Theorems

Main idea of the proofs

• We consider
$$X = X_{lin} + \sum_{r=k}^{2n} X_r$$
,

<u>Two cases</u> : k = 2I or k = 2I + 1.

• How to calculate $Carr_p(X)$?

Vector field	X ₂₁	$X_{2/+1}$	 <i>X</i> _{2<i>n</i>}
Depth	2l - 1	27	 2 <i>n</i> – 1

For a given depth p, which X_r contributes to $Carr_p(X)$?

 Notation : Carr_{p,l}(X_i) the contribution of X_i in depth p and l the length of the corresponding words.

If
$$k = 2I + 1$$
 :

• $Carr_{2l+2q}(X) = Carr_{2l+2q,1}(X_{2l+2q+1})$, for $0 \le q \le l-1$,

If k = 2l + 1: • $Carr_{2l+2q}(X) = Carr_{2l+2q,1}(X_{2l+2q+1})$, for $0 \le q \le l - 1$, and

•
$$Carr_{4l}(X) = Carr_{4l,1}(X_{4l+1}) + Carr_{4l,2}(X_{2l})$$

If
$$k = 2l + 1$$
:
• $Carr_{2l+2q}(X) = Carr_{2l+2q,1}(X_{2l+2q+1})$, for $0 \le q \le l - 1$,
and

•
$$Carr_{4l}(X) = Carr_{4l,1}(X_{4l+1}) + Carr_{4l,2}(X_{2l})$$

General formulas

$$Carr_{2j,1}(X_{2j+1}) = p_{j,j}(xy)^j (x\partial_x - y\partial_y),$$

$$Carr_{2j,2}(X_{j+1}) = \frac{1}{2} \sum_{n \in A(X_{j+1})} Carr^{n,ping(n)}[B_n, B_{ping(n)}],$$

where $ping(n) = ping(n^1, n^2) = (n^2, n^1)$.

If
$$k = 2l + 1$$
:
• $Carr_{2l+2q}(X) = Carr_{2l+2q,1}(X_{2l+2q+1})$, for $0 \le q \le l - 1$,
and

•
$$Carr_{4l}(X) = Carr_{4l,1}(X_{4l+1}) + Carr_{4l,2}(X_{2l})$$

General formulas

$$Carr_{2j,1}(X_{2j+1}) = p_{j,j}(xy)^j (x\partial_x - y\partial_y),$$

$$Carr_{2j,2}(X_{j+1}) = \frac{1}{2} \sum_{n \in A(X_{j+1})} Carr^{n,ping(n)}[B_n, B_{ping(n)}],$$

where $ping(n) = ping(n^1, n^2) = (n^2, n^1)$.

$$Carr_{2k}(X) = F \times (x\partial_x - y\partial_y) \text{ with }:$$

$$F = p_{k,k} + i \left(\sum_{j=\lfloor \frac{2l+1}{2} \rfloor + 1}^{2l} \frac{2l(2l+1)}{(2l-j+1)^2} |p_{j-1,2l-j}|^2 + \frac{2l}{2l+1} |p_{-1,2l}|^2 \right)$$

$$Carr_{2k}(X) = F \times (x\partial_x - y\partial_y) \text{ with }:$$

$$F = p_{k,k} + i \left(\sum_{j=\lfloor \frac{2l+1}{2} \rfloor + 1}^{2l} \frac{2l(2l+1)}{(2l-j+1)^2} |p_{j-1,2l-j}|^2 + \frac{2l}{2l+1} |p_{-1,2l}|^2 \right)$$

• If $Carr_{2k}(X) = 0$, there is a "sphere" linking X_{2l} and $X_{2k+1} = X_{4l-1} \Rightarrow$

$$Carr_{2k}(X) = F \times (x\partial_x - y\partial_y) \text{ with }:$$

$$F = p_{k,k} + i \left(\sum_{j=\lfloor \frac{2l+1}{2} \rfloor + 1}^{2l} \frac{2l(2l+1)}{(2l-j+1)^2} |p_{j-1,2l-j}|^2 + \frac{2l}{2l+1} |p_{-1,2l}|^2 \right)$$

• If $Carr_{2k}(X) = 0$, there is a "sphere" linking X_{2l} and $X_{2k+1} = X_{4l-1} \Rightarrow$

(C1) If $Im(p_{k,k}) > 0$, we have an obstruction to the isochronicity !

$$Carr_{2k}(X) = F \times (x\partial_x - y\partial_y) \text{ with }:$$

$$F = p_{k,k} + i \left(\sum_{j=\lfloor \frac{2l+1}{2} \rfloor + 1}^{2l} \frac{2l(2l+1)}{(2l-j+1)^2} |p_{j-1,2l-j}|^2 + \frac{2l}{2l+1} |p_{-1,2l}|^2 \right)$$

• If $Carr_{2k}(X) = 0$, there is a "sphere" linking X_{2l} and $X_{2k+1} = X_{4l-1} \Rightarrow$

(C1) If $Im(p_{k,k}) > 0$, we have an obstruction to the isochronicity! (C2) If $p_{k,k} = 0$, the sphere is trivial $\Rightarrow X_{2l} = 0$.

Proof of Theorem 1

We consider
$$X = X_{lin} + \sum_{r=2}^{2n} X_r$$
 :

Proof of Theorem 1

We consider
$$X = X_{lin} + \sum_{r=2}^{2n} X_r$$
 :

• If there exists $1 \le k < n-1$ s.t $p_{j,j} = 0$ for j = 0, ..., k-1and $Im(p_{k,k}) > 0$, \Rightarrow by (C1), X can't be isochronous,

Proof of Theorem 1

We consider
$$X = X_{lin} + \sum_{r=2}^{2n} X_r$$
 :

- If there exists $1 \le k < n-1$ s.t $p_{j,j} = 0$ for j = 0, ..., k-1and $Im(p_{k,k}) > 0$, \Rightarrow by (C1), X can't be isochronous,
- If $p_{k,k} = 0$ for $1 \le k \le n-1$, \Rightarrow by the condition (C2), X is nonisochronous or X_r is trivial.

Proof of Theorem 2

We consider $X = X_{lin} + X_k + ... + X_{2n}$ for $k \ge 2$ and $n \le k - 1$.

Proof of Theorem 2

We consider $X = X_{lin} + X_k + ... + X_{2n}$ for $k \ge 2$ and $n \le k - 1$. • If k is even, as $n \le k - 1$ we have : $\underbrace{\frac{\text{Vector field} \quad X_k \quad X_{k+1} \quad ... \quad X_{2n}}{\text{Depth} \quad k - 1 \quad k \quad ... \quad 2n - 1}}$

Proof of Theorem 2

We consider $X = X_{lin} + X_k + ... + X_{2n}$ for $k \ge 2$ and $n \le k - 1$. • If k is even, as $n \le k - 1$ we have :

Vector field	X_k	X_{k+1}	 <i>X</i> _{2<i>n</i>}
Depth	k-1	k	 2 <i>n</i> – 1

We have $: 2(k-1) \ge 2n > 2n - 1$, \Rightarrow No interaction between the length 1 and 2 in a same depth, \Rightarrow each X_r is trivial or X is nonisochronous.

• If k is odd, we have an analogous result.

A last theorem [P., Cresson]

Let X be a non trivial real polynomial Hamiltonian vector field on the form :

$$X = X_{lin} + X_k + \dots + X_{2l} + \sum_{n=1}^{m} \sum_{j=c_n}^{2(c_n-1)} X_j$$

where $k \ge 2$, $l \le k - 1$ and the sequence c_n is defined by : $c_1 = l$ and $\forall n \ge 2$, $c_n = 4(c_{n-1} - 1)$. Then X is nonisochronous.

A last theorem [P., Cresson]

Let X be a non trivial real polynomial Hamiltonian vector field on the form :

$$X = X_{lin} + X_k + \dots + X_{2l} + \sum_{n=1}^{m} \sum_{j=c_n}^{2(c_n-1)} X_j$$

where $k \ge 2$, $l \le k - 1$ and the sequence c_n is defined by : $c_1 = l$ and $\forall n \ge 2$, $c_n = 4(c_{n-1} - 1)$. Then X is nonisochronous.

Some examples :

•
$$X = X_{lin} + X_2 + X_4 + X_5 + X_6$$
,
• $X = X_{lin} + X_2 + X_4 + X_5 + X_6 + \sum_{j=12}^{22} X_j + \sum_{j=44}^{86} X_j + \sum_{j=172}^{342} X_j$

Perspectives

- To complete our Maple program,
- To try to generalize the Theorem 2 for n > k 1,
- To extend our study to the isochronous complex Hamiltonian case.

Thank your for your attention !