Isochronous centers of polynomial Hamiltonian systems and correction of vector fields

Jordy Palafox
(A joint work with Jacky Cresson)

Journées Nationales de Calcul Formel 2017 CIRM
16-20 January 2017

(1) Introduction

- Isochronous centers and Jarque-Villadelprat's conjecture
- Our approach : the Mould Calculus
(2) Progress about the conjecture
- General notations
- Our results about the conjecture
- Illustrations of our theorems
(3) Proofs of the theorems
- Prepared form of vector fields and Mould Expansion
- Correction of a vector field
- Proof of our Theorems

Introduction

We consider the complex representation of a real planar vector field with a center in 0 denoted by

$$
X_{l i n}=i\left(x \partial_{x}-y \partial_{y}\right)
$$

with $x, y \in \mathbb{C}$ with $y=\bar{x}$.

Figure - The equilibrium point 0 is a center.

Which properties are preserved by a polynomial perturbation of this field?

$$
X=X_{\text {lin }}+P(x, y) \partial_{x}+Q(x, y) \partial_{y}
$$

Which properties are preserved by a polynomial perturbation of this field?

$$
X=X_{\text {lin }}+P(x, y) \partial_{x}+Q(x, y) \partial_{y}
$$

The problem of center

Which conditions on P and Q are necessary to preserve the property to be a center?

Which properties are preserved by a polynomial perturbation of this field?

$$
X=X_{\text {lin }}+P(x, y) \partial_{x}+Q(x, y) \partial_{y}
$$

The problem of center

Which conditions on P and Q are necessary to preserve the property to be a center?

- A center is isochronous if all the orbits have the same period.

Which properties are preserved by a polynomial perturbation of this field?

$$
X=X_{\text {lin }}+P(x, y) \partial_{x}+Q(x, y) \partial_{y}
$$

The problem of center

Which conditions on P and Q are necessary to preserve the property to be a center?

- A center is isochronous if all the orbits have the same period.

The problem of isochronous center

Which conditions on P and Q are necessary to preserve the isochronicity?

If X is also Hamiltonian, we have the following conjecture :

Jarque-Villadelprat's conjecture (2002) ${ }^{1}$

Every center of a real planar polynomial Hamiltonian system of even degree is nonisochronous.

1. X.Jarque and J.Villadelprat, "Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four", Journal of Differential Equations 180, 334-373, 2002

If X is also Hamiltonian, we have the following conjecture :

Jarque-Villadelprat's conjecture (2002) ${ }^{1}$

Every center of a real planar polynomial Hamiltonian system of even degree is nonisochronous.

- Loud (1964) : true for quadratic systems,

1. X.Jarque and J.Villadelprat, "Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four", Journal of Differential Equations 180, 334-373, 2002
Jordy Palafox - JNCF $2017 \quad 6 / 32$

If X is also Hamiltonian, we have the following conjecture :

Jarque-Villadelprat's conjecture (2002) ${ }^{1}$

Every center of a real planar polynomial Hamiltonian system of even degree is nonisochronous.

- Loud (1964) : true for quadratic systems,
- B.Schuman (2001) : true in the homogeneous case,

1. X.Jarque and J.Villadelprat, "Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four", Journal of Differential Equations 180, 334-373, 2002
Jordy Palafox - JNCF 2017 / 32

If X is also Hamiltonian, we have the following conjecture :

Jarque-Villadelprat's conjecture (2002) ${ }^{1}$

Every center of a real planar polynomial Hamiltonian system of even degree is nonisochronous.

- Loud (1964) : true for quadratic systems,
- B.Schuman (2001) : true in the homogeneous case,
- Jarque-Villadelprat (2002) : true in the quartic case,

1. X.Jarque and J.Villadelprat, "Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four", Journal of Differential Equations 180, 334-373, 2002
Jordy Palafox - JNCF $2017 \quad 6 / 32$

If X is also Hamiltonian, we have the following conjecture :

Jarque-Villadelprat's conjecture (2002) ${ }^{1}$

Every center of a real planar polynomial Hamiltonian system of even degree is nonisochronous.

- Loud (1964) : true for quadratic systems,
- B.Schuman (2001) : true in the homogeneous case,
- Jarque-Villadelprat (2002) : true in the quartic case,
- Other cases: the conjecture is open!

1. X.Jarque and J.Villadelprat, "Nonexistence of Isochronous Centers in Planar Polynomial Hamiltonian Systems of Degree Four", Journal of Differential Equations 180, 334-373, 2002
Jordy Palafox - JNCF $2017 \quad 6 / 32$

Condition of Isochronicity ${ }^{2}$

The isochronicity is equivalent to the linearizability.
2. Sabatini and Chavarriga , "A survey of Isochronous centers", Qualitative Theory of Dynamical Systems 1 (1999)

Condition of Isochronicity ${ }^{2}$

The isochronicity is equivalent to the linearizability.

How to study the linearizability of a vector field?
2. Sabatini and Chavarriga , "A survey of Isochronous centers", Qualitative Theory of Dynamical Systems 1 (1999)

Correction and mould calculus

- Formalism : Mould calculus introduced by J.Ecalle in 70's.

3. J.Ecalle and B.Vallet, "Correction and linearization of resonant vector fields and diffeomorphisms", Math. Z. 229, 249-318 (1998)

Correction and mould calculus

- Formalism : Mould calculus introduced by J.Ecalle in 70's.
- Correction of a vector field : a formal vector field defined by J.Ecalle and B.Vallet ${ }^{3}$:

3. J.Ecalle and B.Vallet, "Correction and linearization of resonant vector fields and diffeomorphisms", Math. Z. 229, 249-318 (1998)

Correction and mould calculus

- Formalism : Mould calculus introduced by J.Ecalle in 70's.
- Correction of a vector field : a formal vector field defined by J.Ecalle and B.Vallet ${ }^{3}$:

Definition of Correction

- X analytic vector field and $X_{\text {lin }}=$ linear part of X

Find a vector field Z of the following commuting problem :

- $X-Z$ formally conjugate to $X_{\text {lin }}$,
- $\left[X_{\text {lin }}, Z\right]=0$,

The solution Z is the correction of X.
3. J.Ecalle and B.Vallet, "Correction and linearization of resonant vector fields and diffeomorphisms", Math. Z. 229, 249-318 (1998)

Criterion of linearizability [Ecalle,Vallet]

A vector field is linearizable if and only if its correction is zero.

Criterion of linearizability [Ecalle,Vallet]

A vector field is linearizable if and only if its correction is zero.
The interest of this formalism :

- An algorithmic and explicit way to compute the conditions of linearizability.

Criterion of linearizability [Ecalle,Vallet]

A vector field is linearizable if and only if its correction is zero.
The interest of this formalism :

- An algorithmic and explicit way to compute the conditions of linearizability.
- To distinguish what depends on the coefficients of P and Q and what is universal for the linearizability.

Our results

We consider a polynomial perturbation as above :

$$
X=X_{l i n}+\sum_{r=k}^{1} X_{r}
$$

with

- $X_{r}=P_{r}(x, y) \partial_{x}+Q_{r}(x, y) \partial_{y}$,
- $P_{r}(x, y)=\sum_{j=0}^{r} p_{r-j-1, j} x^{r-j} y^{j}, \quad Q_{r}(x, y)=\sum_{j=0}^{r} q_{r-j, j-1} x^{r-j} y^{j}$.
- $p_{r-j-1, j}, \quad q_{r-j, j-1} \in \mathbb{C}$ with the following conditions :

Real system condition : $p_{j, k}=\bar{q}_{k, j}$ with $j+k=r-1$
Hamiltonian condition : $p_{j-1, r-j}=-\frac{r-j+1}{j} q_{j-1, r-j}$ with $j=1, \ldots r$.

Theorem 1 [P.,Cresson]

Let X be a real Hamiltonian vector field of even degree $2 n$ given by :

$$
X=X_{l i n}+\sum_{r=2}^{2 n} X_{r}
$$

If X satisfies one of the following conditions:
(1) there exists $1 \leq k<n-1$ such that $p_{i, i}=0$ for $i=1, \ldots, k-1$ and $\operatorname{Im}\left(p_{k, k}\right)>0$,
(2) $p_{i, i}=0$ for $i=1, \ldots, n-1$,

Then the vector field X is nonisochronous.

Theorem 2 [P.,Cresson]

A real Hamiltonian vector field of the form :

$$
X=X_{l i n}+X_{k}+\ldots+X_{2 n}
$$

for $k \geq 2$ and $n \leq k-1$, is nonisochronous.

By the Theorem 1, we have :

- $X=X_{\text {lin }}+X_{2}$,

By the Theorem 1, we have:

- $X=X_{\text {lin }}+X_{2}$,
- $X=X_{\text {lin }}+X_{2}+X_{3}+X_{4}$ with $\operatorname{Im}\left(p_{1,1}\right)>0$,
- $X=X_{\text {lin }}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}$ with $\operatorname{Im}\left(p_{1,1}\right)>0$ or $p_{1,1}=0$ and $\operatorname{Im}\left(p_{2,2}\right)>0$
- etc...
are nonisochronous.

By the Theorem 1, we have:

- $X=X_{\text {lin }}+X_{2}$,
- $X=X_{\text {lin }}+X_{2}+X_{3}+X_{4}$ with $\operatorname{Im}\left(p_{1,1}\right)>0$,
- $X=X_{\text {lin }}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}$ with $\operatorname{Im}\left(p_{1,1}\right)>0$ or $p_{1,1}=0$ and $\operatorname{Im}\left(p_{2,2}\right)>0$
- etc...
are nonisochronous.
By the Theorem 2, we have :
- $X=X_{\text {lin }}+X_{2}$,

By the Theorem 1, we have:

- $X=X_{\text {lin }}+X_{2}$,
- $X=X_{\text {lin }}+X_{2}+X_{3}+X_{4}$ with $\operatorname{Im}\left(p_{1,1}\right)>0$,
- $X=X_{\text {lin }}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}$ with $\operatorname{Im}\left(p_{1,1}\right)>0$ or $p_{1,1}=0$ and $\operatorname{Im}\left(p_{2,2}\right)>0$
- etc...
are nonisochronous.
By the Theorem 2, we have:
- $X=X_{\text {lin }}+X_{2}$,
- $X=X_{\text {lin }}+X_{3}+X_{4}$,
- $X=X_{\text {lin }}+X_{4}+X_{5}+X_{6}$,
- $X=X_{\text {lin }}+\sum_{47}^{92} X_{r}$
- etc...
are nonisochronous!

Proofs of the theorems

In order to prove our two theorems:

In order to prove our two theorems:

- Prepared form of a vector field and Mould expansion

In order to prove our two theorems:

- Prepared form of a vector field and Mould expansion
- Study of the Correction by depth

In order to prove our two theorems:

- Prepared form of a vector field and Mould expansion
- Study of the Correction by depth
- Proofs of the theorems

Prepared form of a vector field and Mould expansion

We consider a vector field $X=X_{\text {lin }}+\sum X_{r}$. The prepared form of X is :

$$
X=X_{\text {lin }}+\sum_{n \in A(X)} B_{n},
$$

where

Prepared form of a vector field and Mould expansion

We consider a vector field $X=X_{\text {lin }}+\sum X_{r}$. The prepared form of X is :

$$
X=X_{l i n}+\sum_{n \in A(X)} B_{n}
$$

where

- Letter : $n=\left(n^{1}, n^{2}\right) \in A(X)$,

Prepared form of a vector field and Mould expansion

We consider a vector field $X=X_{\text {lin }}+\sum X_{r}$. The prepared form of X is :

$$
X=X_{l i n}+\sum_{n \in A(X)} B_{n}
$$

where

- Letter : $n=\left(n^{1}, n^{2}\right) \in A(X)$,
- Alphabet : $A(X) \subset \mathbb{Z}^{2}$,

Prepared form of a vector field and Mould expansion

We consider a vector field $X=X_{\text {lin }}+\sum X_{r}$. The prepared form of X is:

$$
X=X_{l i n}+\sum_{n \in A(X)} B_{n}
$$

where

- Letter : $n=\left(n^{1}, n^{2}\right) \in A(X)$,
- Alphabet : $A(X) \subset \mathbb{Z}^{2}$,
- Homogeneous differential operator: B_{n} satisfying

$$
B_{n}\left(x^{m^{1}} y^{m^{2}}\right)=\beta_{n} x^{m^{1}+n^{1}} y^{m^{2}+n^{2}} \text { with } \beta_{n} \in \mathbb{C}
$$

Example of decomposition

We consider the following vector field :

$$
X=X_{l i n}+X_{2}
$$

where

$$
\begin{aligned}
X_{2}= & \left(p_{1,0} x^{2}+p_{0,1} x y+p_{-1,2} y^{2}\right) \partial_{x} \\
& +\left(q_{-1,2} x^{2}+q_{1,0} x y+q_{0,1} y^{2}\right) \partial_{y}
\end{aligned}
$$

Example of decomposition

We consider the following vector field :

$$
X=X_{l i n}+X_{2}
$$

where

$$
\begin{aligned}
X_{2}= & \left(p_{1,0} x^{2}+p_{0,1} x y+p_{-1,2} y^{2}\right) \partial_{x} \\
& +\left(q_{-1,2} x^{2}+q_{1,0} x y+q_{0,1} y^{2}\right) \partial_{y}
\end{aligned}
$$

The alphabet and the operators are given by :

- $B_{(1,0)}=x\left(p_{1,0} x \partial_{x}+p_{0,1} y \partial_{y}\right)$,
- $B_{(2,-1)}=p_{2,-1} x^{2} \partial_{y}$,
- $B_{(0,1)}=y\left(p_{0,1} x \partial_{x}+p_{0,1} y \partial_{y}\right)$,
- $B_{(-1,2)}=p_{-1,2} y^{2} \partial_{x}$.
- $A(X)=\{(2,-1),(1,0),(0,1),(-1,2)\}$,

Example of decomposition

We consider the following vector field :

$$
X=X_{l i n}+X_{2}
$$

where

$$
\begin{aligned}
X_{2}= & \left(p_{1,0} x^{2}+p_{0,1} x y+p_{-1,2} y^{2}\right) \partial_{x} \\
& +\left(q_{-1,2} x^{2}+q_{1,0} x y+q_{0,1} y^{2}\right) \partial_{y}
\end{aligned}
$$

The alphabet and the operators are given by :

- $B_{(1,0)}=x\left(p_{1,0} x \partial_{x}+p_{0,1} y \partial_{y}\right)$,
- $B_{(2,-1)}=p_{2,-1} x^{2} \partial_{y}$,
- $B_{(0,1)}=y\left(p_{0,1} x \partial_{x}+p_{0,1} y \partial_{y}\right)$,
- $B_{(-1,2)}=p_{-1,2} y^{2} \partial_{x}$.
- $A(X)=\{(2,-1),(1,0),(0,1),(-1,2)\}$,

We write X as a series:
where :

$$
X=X_{l i n}+\sum_{\mathbf{n} \in A^{*}(X)} I^{\mathbf{n}} B_{\mathbf{n}}
$$

We write X as a series :
where:

$$
X=X_{\text {lin }}+\sum_{\mathbf{n} \in A^{*}(X)} I^{\mathbf{n}} B_{\mathbf{n}}
$$

- $A^{*}(X)$: set of words on $A(X)$,

We write X as a series :
where:

$$
X=X_{l i n}+\sum_{\mathbf{n} \in A^{*}(X)} I^{\mathbf{n}} B_{\mathbf{n}}
$$

- $A^{*}(X)$: set of words on $A(X)$,
- $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ word by concatenation, with $n_{j} \in A(X)$,

We write X as a series :
where:

$$
X=X_{l i n}+\sum_{\mathbf{n} \in A^{*}(X)} I^{\mathbf{n}} B_{\mathbf{n}}
$$

- $A^{*}(X)$: set of words on $A(X)$,
- $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ word by concatenation, with $n_{j} \in A(X)$,
- $\ell(\mathbf{n})=r$ the length of the word \mathbf{n},

We write X as a series :

$$
X=X_{l i n}+\sum_{\mathbf{n} \in A^{*}(X)} I^{\mathbf{n}} B_{\mathbf{n}}
$$

where:

- $A^{*}(X)$: set of words on $A(X)$,
- $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ word by concatenation, with $n_{j} \in A(X)$,
- $\ell(\mathbf{n})=r$ the length of the word \mathbf{n},
- $B_{\mathbf{n}}=B_{n_{1}} \circ \cdots \circ B_{n_{r}}$, the usual composition of differential operators,

We write X as a series :

$$
X=X_{l i n}+\sum_{\mathbf{n} \in A^{*}(X)} I^{\mathbf{n}} B_{\mathbf{n}}
$$

where:

- $A^{*}(X)$: set of words on $A(X)$,
- $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ word by concatenation, with $n_{j} \in A(X)$,
- $\ell(\mathbf{n})=r$ the length of the word \mathbf{n},
- $B_{\mathbf{n}}=B_{n_{1}} \circ \cdots \circ B_{n_{r}}$, the usual composition of differential operators,
- the coefficient $/^{\bullet}$ is a mould : an application from $A^{*}(X)$ to \mathbb{C}.

We write X as a series:

$$
X=X_{l i n}+\sum_{\mathbf{n} \in A^{*}(X)} I^{\mathbf{n}} B_{\mathbf{n}}
$$

where:

- $A^{*}(X)$: set of words on $A(X)$,
- $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ word by concatenation, with $n_{j} \in A(X)$,
- $\ell(\mathbf{n})=r$ the length of the word \mathbf{n},
- $B_{\mathbf{n}}=B_{n_{1}} \circ \cdots \circ B_{n_{r}}$, the usual composition of differential operators,
- the coefficient $/^{\bullet}$ is a mould : an application from $A^{*}(X)$ to \mathbb{C}.

This operation is called mould expansion.

Resonant letters and words

We denoted by $\lambda=(i,-i)$ the eigensystem of $X_{\text {lin }}$,

Resonant letters and words

We denoted by $\lambda=(i,-i)$ the eigensystem of $X_{\text {lin }}$,

- The weight of a letter $n=\left(n^{1}, n^{2}\right)$ is defined by:

$$
\omega(n)=\langle n, \lambda\rangle,
$$

Resonant letters and words

We denoted by $\lambda=(i,-i)$ the eigensystem of $X_{\text {lin }}$,

- The weight of a letter $n=\left(n^{1}, n^{2}\right)$ is defined by:

$$
\omega(n)=\langle n, \lambda\rangle,
$$

- For a word $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$,

$$
\omega(\mathbf{n})=\omega\left(n_{1}\right)+\ldots+\omega\left(n_{r}\right)
$$

Resonant letters and words

We denoted by $\lambda=(i,-i)$ the eigensystem of $X_{\text {lin }}$,

- The weight of a letter $n=\left(n^{1}, n^{2}\right)$ is defined by:

$$
\omega(n)=\langle n, \lambda\rangle
$$

- For a word $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$,

$$
\omega(\mathbf{n})=\omega\left(n_{1}\right)+\ldots+\omega\left(n_{r}\right)
$$

Resonant words

A word \mathbf{n} is resonant if $\omega(\mathbf{n})=0$.

The correction and its mould

Theorem [Ecalle,Vallet]

The correction can be written :

$$
\operatorname{Carr}(X)=\sum_{\mathbf{n} \in A^{*}(X)} \operatorname{Carr}^{\mathbf{n}} B_{\mathbf{n}}=\sum_{k \geq 1} \frac{1}{k} \sum_{\substack{\mathbf{n} \in \boldsymbol{A}^{*}(X) \\ \ell(\mathbf{n})=k}} \operatorname{Carr}^{\mathbf{n}}\left[B_{\mathbf{n}}\right]
$$

where:

The correction and its mould

Theorem [Ecalle,Vallet]

The correction can be written :

$$
\operatorname{Carr}(X)=\sum_{\mathbf{n} \in A^{*}(X)} \operatorname{Carr}^{\mathbf{n}} B_{\mathbf{n}}=\sum_{k \geq 1} \frac{1}{k} \sum_{\substack{\mathbf{n} \in A^{*}(X) \\ \ell(\mathbf{n})=k}} \operatorname{Carr}^{\mathbf{n}}\left[B_{\mathbf{n}}\right]
$$

where:

$$
\left.\cdot\left[B_{\mathbf{n}}\right]=\left[B_{n_{1}} \ldots \cdot n_{r}\right]=\left[\ldots\left[\left[B_{n_{1}}, B_{n_{2}}\right], B_{n_{3}}\right], \ldots\right], B_{n_{r}}\right],
$$

The correction and its mould

Theorem [Ecalle,Vallet]

The correction can be written :

$$
\operatorname{Carr}(X)=\sum_{\mathbf{n} \in A^{*}(X)} \operatorname{Carr}^{\mathbf{n}} B_{\mathbf{n}}=\sum_{k \geq 1} \frac{1}{k} \sum_{\substack{\mathbf{n} \in A^{*}(X) \\ \ell(\mathbf{n})=k}} \operatorname{Carr}^{\mathbf{n}}\left[B_{\mathbf{n}}\right]
$$

where :

- $\left.\left[B_{\mathbf{n}}\right]=\left[B_{n_{1} \cdot \ldots \cdot n_{r}}\right]=\left[\ldots .\left[\left[B_{n_{1}}, B_{n_{2}}\right], B_{n_{3}}\right], \ldots\right], B_{n_{r}}\right]$,
- Carr ${ }^{\bullet}$ is the mould of the correction.
- The mould Carr ${ }^{\bullet}$ is given for any word $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ by ${ }^{4}$:

4. It is not a trivial formula : related to the notion of variance of vector fields, see J.Ecalle and B.Vallet, "Correction and linearization of resonant vector fields and diffeomorphisms", Math. Z. 229, 249-318 (1998)

- The mould Carr ${ }^{\bullet}$ is given for any word $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ by ${ }^{4}$:

$$
\omega\left(n_{1}\right) \operatorname{Carr}^{n_{1} \cdot n_{2} \cdot \ldots \cdot n_{r}}+\operatorname{Carr}^{n_{1}+n_{2} \cdot n_{3} \cdot \cdots \cdot n_{r}}=\sum_{n_{1} \cdot \mathbf{b} \cdot \mathbf{c}=\mathbf{n}} \text { Carr }^{n_{1} \cdot \mathbf{c}} \operatorname{Carr}^{\mathbf{b}},
$$

4. It is not a trivial formula : related to the notion of variance of vector fields, see J.Ecalle and B.Vallet, "Correction and linearization of resonant vector fields and diffeomorphisms", Math. Z. 229, 249-318 (1998)

- The mould Carr ${ }^{\bullet}$ is given for any word $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ by ${ }^{4}$: $\omega\left(n_{1}\right) \operatorname{Carr}^{n_{1} \cdot n_{2} \cdot \ldots \cdot n_{r}}+\operatorname{Carr}^{n_{1}+n_{2} \cdot n_{3} \cdot \ldots \cdot n_{r}}=\sum_{n_{1} \cdot \mathbf{b} \cdot \mathbf{c}=\mathbf{n}} \operatorname{Carr}^{n_{1} \cdot \mathbf{c}} \operatorname{Carr}^{\mathbf{b}}$,
- If \mathbf{n} is not a resonant word, Carr $\mathbf{n}^{\mathbf{n}}=0$

4. It is not a trivial formula : related to the notion of variance of vector fields, see J.Ecalle and B.Vallet, "Correction and linearization of resonant vector fields and diffeomorphisms", Math. Z. 229, 249-318 (1998)

- The mould Carr ${ }^{\bullet}$ is given for any word $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ by ${ }^{4}$:

$$
\omega\left(n_{1}\right) \operatorname{Carr}^{n_{1} \cdot n_{2} \cdot \ldots \cdot n_{r}}+\operatorname{Carr}^{n_{1}+n_{2} \cdot n_{3} \cdot \ldots \cdot n_{r}}=\sum_{n_{1} \cdot \mathbf{b} \cdot \mathbf{c}=\mathbf{n}} \text { Carr }^{n_{1} \cdot \mathbf{c}} \text { Carr }^{\mathbf{b}}
$$

- If \mathbf{n} is not a resonant word, Carr $\mathbf{n}^{\mathbf{n}}=0$

For $\omega(\mathbf{n})=0$,

- If $\ell(\mathbf{n})=1$, Carr $^{\mathbf{n}}=1$,
- If $\ell(\mathbf{n})=2, \mathbf{n}=n_{1} \cdot n_{2}, \operatorname{Carr}^{\mathbf{n}}=\frac{-1}{\omega\left(n_{1}\right)}$

4. It is not a trivial formula : related to the notion of variance of vector fields, see J.Ecalle and B.Vallet, "Correction and linearization of resonant vector fields and diffeomorphisms", Math. Z. 229, 249-318 (1998)

New writing of the Correction

We introduce the notion of depth :

- The depth of a letter $n=\left(n^{1}, n^{2}\right)$ is

$$
p(n)=n^{1}+n^{2}
$$

New writing of the Correction

We introduce the notion of depth :

- The depth of a letter $n=\left(n^{1}, n^{2}\right)$ is

$$
p(n)=n^{1}+n^{2}
$$

- The depth of a word $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ is given by

$$
p(\mathbf{n})=p\left(n_{1}\right)+\ldots+p\left(n_{r}\right)
$$

New writing of the Correction

We introduce the notion of depth :

- The depth of a letter $n=\left(n^{1}, n^{2}\right)$ is

$$
p(n)=n^{1}+n^{2}
$$

- The depth of a word $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ is given by

$$
p(\mathbf{n})=p\left(n_{1}\right)+\ldots+p\left(n_{r}\right)
$$

\Rightarrow We can rewrite the correction using the depth

New writing of the Correction

We introduce the notion of depth :

- The depth of a letter $n=\left(n^{1}, n^{2}\right)$ is

$$
p(n)=n^{1}+n^{2}
$$

- The depth of a word $\mathbf{n}=n_{1} \cdot \ldots \cdot n_{r}$ is given by

$$
p(\mathbf{n})=p\left(n_{1}\right)+\ldots+p\left(n_{r}\right)
$$

\Rightarrow We can rewrite the correction using the depth

Correction via the depth

$$
\operatorname{Carr}(X)=\sum_{p \geq 1} \operatorname{Carr}_{p}(X) \text { with } \operatorname{Carr}_{p}(X)=\sum_{\substack{\mathbf{n} \in A^{*}(X) \\ p(\mathbf{n})=p}} \frac{1}{1(\mathbf{n})} \operatorname{Carr}^{\mathbf{n}}\left[B_{\mathbf{n}}\right]
$$

Linearizability and main property

Criterion of linearizability

A vector field X as above is linearizable if and only if $\operatorname{Carr}_{p}(X)=0$ for all $p \geq 1$.

Linearizability and main property

Criterion of linearizability

A vector field X as above is linearizable if and only if $\operatorname{Carr}_{p}(X)=0$ for all $p \geq 1$.

Property of $\operatorname{Carr}_{p}(X)$

For any odd integer $p, \operatorname{Carr}_{p}(X)=0$.

Main idea of the proofs

- We consider $X=X_{l i n}+\sum_{r=k}^{2 n} X_{r}$,

Main idea of the proofs

- We consider $X=X_{\text {lin }}+\sum_{r=k}^{2 n} X_{r}$,

Two cases : $k=2 /$ or $k=2 I+1$.

Main idea of the proofs

- We consider $X=X_{\text {lin }}+\sum_{r=k}^{2 n} X_{r}$,

Two cases : $k=2 /$ or $k=2 I+1$.

- How to calculate $\operatorname{Carr}_{p}(X)$?

Vector field	$X_{2 I}$	$X_{2 I+1}$	\ldots	$X_{2 n}$
Depth	$2 I-1$	$2 l$	\ldots	$2 n-1$

Main idea of the proofs

- We consider $X=X_{\text {lin }}+\sum_{r=k}^{2 n} X_{r}$,

Two cases : $k=2 /$ or $k=2 I+1$.

- How to calculate $\operatorname{Carr}_{p}(X)$?

Vector field	$X_{2 I}$	$X_{2 I+1}$	\ldots	$X_{2 n}$
Depth	$2 l-1$	$2 l$	\ldots	$2 n-1$

For a given depth p, which X_{r} contributes to $\operatorname{Carr}_{p}(X)$?

Main idea of the proofs

- We consider $X=X_{l i n}+\sum_{r=k}^{2 n} X_{r}$,

Two cases : $k=2 /$ or $k=2 I+1$.

- How to calculate $\operatorname{Carr}_{p}(X)$?

Vector field	$X_{2 I}$	$X_{2 I+1}$	\ldots	$X_{2 n}$
Depth	$2 I-1$	$2 l$	\ldots	$2 n-1$

For a given depth p, which X_{r} contributes to $\operatorname{Carr}_{p}(X)$?

- Notation: $\operatorname{Carr}_{p, \ell}\left(X_{i}\right)$ the contribution of X_{i} in depth p and ℓ the length of the corresponding words.

If $k=2 I+1$:

- $\operatorname{Carr}_{2 /+2 q}(X)=\operatorname{Carr}_{2 /+2 q, 1}\left(X_{2 /+2 q+1}\right)$, for $0 \leq q \leq I-1$,

If $k=2 I+1$:

- $\operatorname{Carr}_{2 l+2 q}(X)=\operatorname{Carr}_{2 l+2 q, 1}\left(X_{2 /+2 q+1}\right)$, for $0 \leq q \leq I-1$, and
- $\operatorname{Carr}_{4 I}(X)=\operatorname{Carr}_{4 I, 1}\left(X_{4 I+1}\right)+\operatorname{Carr}_{4 l, 2}\left(X_{2 I}\right)$

If $k=2 I+1$:

- $\operatorname{Carr}_{2 /+2 q}(X)=\operatorname{Carr}_{2 /+2 q, 1}\left(X_{2 I+2 q+1}\right)$, for $0 \leq q \leq I-1$, and
- $\operatorname{Carr}_{4 I}(X)=\operatorname{Carr}_{4 I, 1}\left(X_{4 I+1}\right)+\operatorname{Carr}_{4 l, 2}\left(X_{2 I}\right)$

General formulas

$\operatorname{Carr}_{2 j, 1}\left(X_{2 j+1}\right)=p_{j, j}(x y)^{j}\left(x \partial_{x}-y \partial_{y}\right)$,
$\operatorname{Carr}_{2 j, 2}\left(X_{j+1}\right)=\frac{1}{2} \sum_{n \in A\left(X_{j+1}\right)} \operatorname{Carr}^{n, \operatorname{ping}(n)}\left[B_{n}, B_{\text {ping }(n)}\right]$,
where $\operatorname{ping}(n)=\operatorname{ping}\left(n^{1}, n^{2}\right)=\left(n^{2}, n^{1}\right)$.

If $k=2 I+1$:

- $\operatorname{Carr}_{2 /+2 q}(X)=\operatorname{Carr}_{2 /+2 q, 1}\left(X_{2 I+2 q+1}\right)$, for $0 \leq q \leq I-1$, and
- $\operatorname{Carr}_{4 I}(X)=\operatorname{Carr}_{4 I, 1}\left(X_{4 I+1}\right)+\operatorname{Carr}_{4 l, 2}\left(X_{2 I}\right)$

General formulas

$\operatorname{Carr}_{2 j, 1}\left(X_{2 j+1}\right)=p_{j, j}(x y)^{j}\left(x \partial_{x}-y \partial_{y}\right)$,
$\operatorname{Carr}_{2 j, 2}\left(X_{j+1}\right)=\frac{1}{2} \sum_{n \in A\left(X_{j+1}\right)} \operatorname{Carr}^{n, \operatorname{ping}(n)}\left[B_{n}, B_{\text {ping }(n)}\right]$,
where $\operatorname{ping}(n)=\operatorname{ping}\left(n^{1}, n^{2}\right)=\left(n^{2}, n^{1}\right)$.

With the conditions for X to be real and Hamiltonian, we have :
$\operatorname{Carr}_{2 k}(X)=F \times\left(x \partial_{x}-y \partial_{y}\right)$ with :

$$
F=p_{k, k}+i\left(\sum_{j=\left\lfloor\frac{2 l+1}{2}\right\rfloor+1}^{2 l} \frac{2 l(2 l+1)}{(2 l-j+1)^{2}}\left|p_{j-1,2 l-j}\right|^{2}+\frac{2 l}{2 l+1}\left|p_{-1,2 \mid}\right|^{2}\right)
$$

With the conditions for X to be real and Hamiltonian, we have :
$\operatorname{Carr}_{2 k}(X)=F \times\left(x \partial_{x}-y \partial_{y}\right)$ with :

$$
F=p_{k, k}+i\left(\sum_{j=\left\lfloor\frac{2 l+1}{2}\right\rfloor+1}^{2 l} \frac{2 l(2 l+1)}{(2 l-j+1)^{2}}\left|p_{j-1,2 l-j}\right|^{2}+\frac{2 l}{2 l+1}\left|p_{-1,2 \mid}\right|^{2}\right)
$$

- If $\operatorname{Carr}_{2 k}(X)=0$, there is a "sphere" linking X_{21} and $X_{2 k+1}=X_{4 l-1} \Rightarrow$

With the conditions for X to be real and Hamiltonian, we have :
$\operatorname{Carr}_{2 k}(X)=F \times\left(x \partial_{x}-y \partial_{y}\right)$ with :

$$
F=p_{k, k}+i\left(\sum_{j=\left\lfloor\frac{2 l+1}{2}\right\rfloor+1}^{2 l} \frac{2 l(2 l+1)}{(2 l-j+1)^{2}}\left|p_{j-1,2 l-j}\right|^{2}+\frac{2 l}{2 l+1}\left|p_{-1,2 \mid}\right|^{2}\right)
$$

- If $\operatorname{Carr}_{2 k}(X)=0$, there is a "sphere" linking X_{21} and $X_{2 k+1}=X_{4 l-1} \Rightarrow$
(C1) If $\operatorname{Im}\left(p_{k, k}\right)>0$, we have an obstruction to the isochronicity!

With the conditions for X to be real and Hamiltonian, we have :
$\operatorname{Carr}_{2 k}(X)=F \times\left(x \partial_{x}-y \partial_{y}\right)$ with :

$$
F=p_{k, k}+i\left(\sum_{j=\left\lfloor\frac{2 l+1}{2}\right\rfloor+1}^{2 l} \frac{2 l(2 l+1)}{(2 l-j+1)^{2}}\left|p_{j-1,2 l-j}\right|^{2}+\frac{2 l}{2 l+1}\left|p_{-1,2 \mid}\right|^{2}\right)
$$

- If $\operatorname{Carr}_{2 k}(X)=0$, there is a "sphere" linking X_{21} and $X_{2 k+1}=X_{4 l-1} \Rightarrow$
(C1) If $\operatorname{Im}\left(p_{k, k}\right)>0$, we have an obstruction to the isochronicity!
(C2) If $p_{k, k}=0$, the sphere is trivial $\Rightarrow X_{2 I}=0$.

Introduction

Proof of Theorem 1

We consider $X=X_{\text {lin }}+\sum_{r=2}^{2 n} X_{r}$:

Proof of Theorem 1

We consider $X=X_{\text {lin }}+\sum_{r=2}^{2 n} X_{r}$:
(1) If there exists $1 \leq k<n-1$ s.t $p_{j, j}=0$ for $j=0, \ldots, k-1$ and $\operatorname{Im}\left(p_{k, k}\right)>0$,
\Rightarrow by (C1), X can't be isochronous,

Proof of Theorem 1

We consider $X=X_{\text {lin }}+\sum_{r=2}^{2 n} X_{r}$:
(1) If there exists $1 \leq k<n-1$ s.t $p_{j, j}=0$ for $j=0, \ldots, k-1$ and $\operatorname{Im}\left(p_{k, k}\right)>0$, \Rightarrow by (C1), X can't be isochronous,
(2) If $p_{k, k}=0$ for $1 \leq k \leq n-1$,
\Rightarrow by the condition (C2), X is nonisochronous or X_{r} is trivial.

Proof of Theorem 2

We consider $X=X_{\text {lin }}+X_{k}+\ldots+X_{2 n}$ for $k \geq 2$ and $n \leq k-1$.

Proof of Theorem 2

We consider $X=X_{\text {lin }}+X_{k}+\ldots+X_{2 n}$ for $k \geq 2$ and $n \leq k-1$.

- If k is even, as $n \leq k-1$ we have :

Vector field	X_{k}	X_{k+1}	\ldots	$X_{2 n}$
Depth	$k-1$	k	\ldots	$2 n-1$

Proof of Theorem 2

We consider $X=X_{\text {lin }}+X_{k}+\ldots+X_{2 n}$ for $k \geq 2$ and $n \leq k-1$.

- If k is even, as $n \leq k-1$ we have :

Vector field	X_{k}	X_{k+1}	\ldots	$X_{2 n}$
Depth	$k-1$	k	\ldots	$2 n-1$

We have : $2(k-1) \geq 2 n>2 n-1$,
\Rightarrow No interaction between the length 1 and 2 in a same depth,
\Rightarrow each X_{r} is trivial or X is nonisochronous.

- If k is odd, we have an analogous result.

A last theorem [P.,Cresson]

Let X be a non trivial real polynomial Hamiltonian vector field on the form :

$$
X=X_{l i n}+X_{k}+\ldots+X_{2 I}+\sum_{n=1}^{m} \sum_{j=c_{n}}^{2\left(c_{n}-1\right)} X_{j}
$$

where $k \geq 2, I \leq k-1$ and the sequence c_{n} is defined by : $c_{1}=I$ and $\forall n \geq 2, c_{n}=4\left(c_{n-1}-1\right)$. Then X is nonisochronous.

A last theorem [P.,Cresson]

Let X be a non trivial real polynomial Hamiltonian vector field on the form :

$$
X=X_{l i n}+X_{k}+\ldots+X_{2 l}+\sum_{n=1}^{m} \sum_{j=c_{n}}^{2\left(c_{n}-1\right)} X_{j}
$$

where $k \geq 2, I \leq k-1$ and the sequence c_{n} is defined by : $c_{1}=I$ and $\forall n \geq 2, c_{n}=4\left(c_{n-1}-1\right)$. Then X is nonisochronous.

Some examples:

- $X=X_{\text {lin }}+X_{2}+X_{4}+X_{5}+X_{6}$,
- $X=X_{\text {lin }}+X_{2}+X_{4}+X_{5}+X_{6}+\sum_{j=12}^{22} X_{j}+\sum_{j=44}^{86} X_{j}+\sum_{j=172}^{342} X_{j}$

Perspectives

- To complete our Maple program,
- To try to generalize the Theorem 2 for $n>k-1$,
- To extend our study to the isochronous complex Hamiltonian case.

Thank your for your attention!

