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Isochronous centers and Jarque-Villadelprat's conjecture
Our approach : the Mould Calculus

We consider the complex representation of a real planar vector

�eld with a center in 0 denoted by

Xlin = i(x∂x − y∂y )

with x , y ∈ C with y = x̄ .

Figure � The equilibrium point 0 is a center.
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Which properties are preserved by a polynomial perturbation of this
�eld ?

X = Xlin + P(x , y)∂x + Q(x , y)∂y

The problem of center

Which conditions on P and Q are necessary to preserve the
property to be a center ?

A center is isochronous if all the orbits have the same period.

The problem of isochronous center

Which conditions on P and Q are necessary to preserve the
isochronicity ?
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If X is also Hamiltonian, we have the following conjecture :

Jarque-Villadelprat's conjecture (2002) 1

Every center of a real planar polynomial Hamiltonian system of
even degree is nonisochronous.

Loud (1964) : true for quadratic systems ,

B.Schuman (2001) : true in the homogeneous case,

Jarque-Villadelprat (2002) : true in the quartic case,

Other cases : the conjecture is open !

1. X.Jarque and J.Villadelprat , "Nonexistence of Isochronous Centers in Pla-

nar Polynomial Hamiltonian Systems of Degree Four", Journal of Di�erential
Equations 180, 334�373, 2002
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Condition of Isochronicity 2

The isochronicity is equivalent to the linearizability.

How to study the linearizability of a vector �eld ?

2. Sabatini and Chavarriga , "A survey of Isochronous centers", Qualitative
Theory of Dynamical Systems 1 (1999)
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Correction and mould calculus

Formalism : Mould calculus introduced by J.Ecalle in 70's.

Correction of a vector �eld : a formal vector �eld de�ned by
J.Ecalle and B.Vallet 3 :

De�nition of Correction

X analytic vector �eld and Xlin=linear part of X

Find a vector �eld Z of the following commuting problem :

X − Z formally conjugate to Xlin, [Xlin,Z ] = 0,

The solution Z is the correction of X .

3. J.Ecalle and B.Vallet, "Correction and linearization of resonant vector �elds
and di�eomorphisms", Math. Z. 229, 249-318 (1998)

Jordy Palafox - JNCF 2017 8 / 32



Introduction
Progress about the conjecture

Proofs of the theorems

Isochronous centers and Jarque-Villadelprat's conjecture
Our approach : the Mould Calculus

Correction and mould calculus

Formalism : Mould calculus introduced by J.Ecalle in 70's.

Correction of a vector �eld : a formal vector �eld de�ned by
J.Ecalle and B.Vallet 3 :

De�nition of Correction

X analytic vector �eld and Xlin=linear part of X

Find a vector �eld Z of the following commuting problem :

X − Z formally conjugate to Xlin, [Xlin,Z ] = 0,

The solution Z is the correction of X .

3. J.Ecalle and B.Vallet, "Correction and linearization of resonant vector �elds
and di�eomorphisms", Math. Z. 229, 249-318 (1998)

Jordy Palafox - JNCF 2017 8 / 32



Introduction
Progress about the conjecture

Proofs of the theorems

Isochronous centers and Jarque-Villadelprat's conjecture
Our approach : the Mould Calculus

Correction and mould calculus

Formalism : Mould calculus introduced by J.Ecalle in 70's.

Correction of a vector �eld : a formal vector �eld de�ned by
J.Ecalle and B.Vallet 3 :

De�nition of Correction

X analytic vector �eld and Xlin=linear part of X

Find a vector �eld Z of the following commuting problem :

X − Z formally conjugate to Xlin, [Xlin,Z ] = 0,

The solution Z is the correction of X .

3. J.Ecalle and B.Vallet, "Correction and linearization of resonant vector �elds
and di�eomorphisms", Math. Z. 229, 249-318 (1998)

Jordy Palafox - JNCF 2017 8 / 32



Introduction
Progress about the conjecture

Proofs of the theorems

Isochronous centers and Jarque-Villadelprat's conjecture
Our approach : the Mould Calculus

Criterion of linearizability [Ecalle,Vallet]

A vector �eld is linearizable if and only if its correction is zero.

The interest of this formalism :

An algorithmic and explicit way to compute the conditions of
linearizability.

To distinguish what depends on the coe�cients of P and Q
and what is universal for the linearizability.
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We consider a polynomial perturbation as above :

X = Xlin +
l∑

r=k

Xr

with

Xr = Pr (x , y)∂x + Qr (x , y)∂y ,

Pr (x , y) =
r∑

j=0

pr−j−1,jx
r−jy j , Qr (x , y) =

r∑
j=0

qr−j ,j−1x
r−jy j .

pr−j−1,j , qr−j ,j−1 ∈ C with the following conditions :

Real system condition : pj ,k = q̄k,j with j + k = r − 1

Hamiltonian condition : pj−1,r−j = − r−j+1

j qj−1,r−j with j = 1, ...r .
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Theorem 1 [P.,Cresson]

Let X be a real Hamiltonian vector �eld of even degree 2n given
by :

X = Xlin +
2n∑
r=2

Xr

If X satis�es one of the following conditions :

1 there exists 1 ≤ k < n − 1 such that pi ,i = 0 for
i = 1, ..., k − 1 and Im(pk,k) > 0,

2 pi ,i = 0 for i = 1, ..., n − 1,

Then the vector �eld X is nonisochronous.
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Theorem 2 [P.,Cresson]

A real Hamiltonian vector �eld of the form :

X = Xlin + Xk + ...+ X2n,

for k ≥ 2 and n ≤ k − 1, is nonisochronous.
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By the Theorem 1, we have :

X = Xlin + X2 ,

X = Xlin + X2 + X3 + X4 with Im(p1,1) > 0,

X = Xlin + X2 + X3 + X4 + X5 + X6 with Im(p1,1) > 0 or
p1,1 = 0 and Im(p2,2) > 0

etc...

are nonisochronous.
By the Theorem 2, we have :

X = Xlin + X2 ,

X = Xlin + X3 + X4,

X = Xlin + X4 + X5 + X6,

X = Xlin +
92∑
47

Xr

etc...

are nonisochronous !
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In order to prove our two theorems :

Prepared form of a vector �eld and Mould expansion

Study of the Correction by depth

Proofs of the theorems
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Prepared form of a vector �eld and Mould expansion

We consider a vector �eld X = Xlin +
∑

Xr . The prepared form of
X is :

X = Xlin +
∑

n∈A(X )

Bn,

where

Letter : n = (n1, n2) ∈ A(X ),

Alphabet : A(X ) ⊂ Z2 ,

Homogeneous di�erential operator : Bn satisfying

Bn(xm
1
ym

2
) = βnx

m1+n1ym
2+n2 with βn ∈ C

Jordy Palafox - JNCF 2017 17 / 32
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Example of decomposition

We consider the following vector �eld :

X = Xlin + X2

where X2 =
(
p1,0x

2 + p0,1xy + p−1,2y
2
)
∂x

+
(
q−1,2x

2 + q1,0xy + q0,1y
2
)
∂y ,

The alphabet and the operators are given by :

B(1,0) = x(p1,0x∂x + p0,1y∂y ),

B(0,1) = y(p0,1x∂x + p0,1y∂y ),

B(2,−1) = p2,−1x
2∂y ,

B(−1,2) = p−1,2y
2∂x .

A(X ) = {(2,−1), (1, 0), (0, 1), (−1, 2)},

Jordy Palafox - JNCF 2017 18 / 32
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We write X as a series :

X = Xlin +
∑

n∈A∗(X )

I nBn

where :

A∗(X ) : set of words on A(X ),

n = n1 · ... · nr word by concatenation, with nj ∈ A(X ),

`(n) = r the length of the word n,

Bn = Bn1 ◦ · · · ◦ Bnr , the usual composition of di�erential
operators,

the coe�cient I • is a mould : an application from A∗(X ) to C.

This operation is called mould expansion.
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Resonant letters and words

We denoted by λ = (i ,−i) the eigensystem of Xlin,

The weight of a letter n = (n1, n2) is de�ned by :

ω(n) = 〈n, λ〉 ,
For a word n = n1 · ... · nr ,

ω(n) = ω(n1) + ...+ ω(nr )

Resonant words

A word n is resonant if ω(n) = 0.
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The correction and its mould

Theorem [Ecalle,Vallet]

The correction can be written :

Carr(X ) =
∑

n∈A∗(X )

CarrnBn =
∑
k≥1

1

k

∑
n∈A∗(X )

`(n)=k

Carrn[Bn]

where :

[Bn] = [Bn1·...·nr ] = [....[[Bn1 ,Bn2 ],Bn3 ], ...],Bnr ],

Carr• is the mould of the correction.
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The mould Carr• is given for any word n = n1 · ... · nr by 4 :

ω(n1)Carrn1·n2·...·nr +Carrn1+n2·n3·...·nr =
∑

n1·b·c=n

Carrn1·cCarrb,

If n is not a resonant word, Carrn = 0

For ω(n) = 0 ,

If `(n) = 1, Carrn = 1,

If `(n) = 2, n = n1 · n2, Carrn = −1
ω(n1)

4. It is not a trivial formula : related to the notion of variance of vector �elds,
see J.Ecalle and B.Vallet, "Correction and linearization of resonant vector �elds

and di�eomorphisms", Math. Z. 229, 249-318 (1998)
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New writing of the Correction

We introduce the notion of depth :

The depth of a letter n = (n1, n2) is

p(n) = n1 + n2,

The depth of a word n = n1 · ... · nr is given by

p(n) = p(n1) + ...+ p(nr ),

⇒ We can rewrite the correction using the depth

Correction via the depth

Carr(X ) =
∑
p≥1

Carrp(X ) with Carrp(X ) =
∑

n∈A∗(X )

p(n)=p

1

l(n)Carr
n[Bn]
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Linearizability and main property

Criterion of linearizability

A vector �eld X as above is linearizable if and only if Carrp(X ) = 0
for all p ≥ 1.

Property of Carrp(X )

For any odd integer p, Carrp(X ) = 0.
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Proof of our Theorems

Main idea of the proofs

We consider X = Xlin +
2n∑
r=k

Xr ,

Two cases : k = 2l or k = 2l + 1.

How to calculate Carrp(X ) ?

Vector �eld X2l X2l+1 ... X2n

Depth 2l − 1 2l ... 2n − 1

For a given depth p, which Xr contributes to Carrp(X ) ?

Notation : Carrp,`(Xi ) the contribution of Xi in depth p and `
the length of the corresponding words.
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If k = 2l + 1 :

Carr2l+2q(X ) = Carr2l+2q,1(X2l+2q+1), for 0 ≤ q ≤ l − 1,

and

Carr4l(X ) = Carr4l ,1(X4l+1) + Carr4l ,2(X2l)

General formulas

Carr2j ,1(X2j+1) = pj ,j(xy)j(x∂x − y∂y ),

Carr2j ,2(Xj+1) = 1

2

∑
n∈A(Xj+1)

Carrn,ping(n)[Bn,Bping(n)],

where ping(n) = ping(n1, n2) = (n2, n1).
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With the conditions for X to be real and Hamiltonian, we have :

Carr2k(X ) = F × (x∂x − y∂y ) with :

F = pk,k + i

 2l∑
j=b 2l+1

2
c+1

2l(2l+1)
(2l−j+1)2

|pj−1,2l−j |2 + 2l
2l+1
|p−1,2l |2



If Carr2k(X ) = 0, there is a "sphere" linking X2l and
X2k+1 = X4l−1 ⇒

(C1) If Im(pk,k) > 0, we have an obstruction to the isochronicity !
(C2) If pk,k = 0, the sphere is trivial ⇒ X2l = 0.
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Proofs of the theorems
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Proof of our Theorems

Proof of Theorem 1

We consider X = Xlin +
2n∑
r=2

Xr :

1 If there exists 1 ≤ k < n − 1 s.t pj ,j = 0 for j = 0, ..., k − 1
and Im(pk,k) > 0,
⇒ by (C1), X can't be isochronous,

2 If pk,k = 0 for 1 ≤ k ≤ n − 1,
⇒ by the condition (C2), X is nonisochronous or Xr is trivial.
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Proof of Theorem 2

We consider X = Xlin + Xk + ...+ X2n for k ≥ 2 and n ≤ k − 1.

If k is even, as n ≤ k − 1 we have :

Vector �eld Xk Xk+1 ... X2n

Depth k − 1 k ... 2n − 1

We have : 2(k − 1) ≥ 2n > 2n − 1 ,
⇒ No interaction between the length 1 and 2 in a same depth,
⇒ each Xr is trivial or X is nonisochronous.

If k is odd, we have an analogous result.
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A last theorem [P.,Cresson]

Let X be a non trivial real polynomial Hamiltonian vector �eld on
the form :

X = Xlin + Xk + ...+ X2l +
m∑

n=1

2(cn−1)∑
j=cn

Xj

where k ≥ 2, l ≤ k − 1 and the sequence cn is de�ned by : c1 = l
and ∀n ≥ 2, cn = 4(cn−1 − 1). Then X is nonisochronous.

Some examples :

X = Xlin + X2 + X4 + X5 + X6,

X = Xlin + X2 + X4 + X5 + X6 +
22∑

j=12

Xj +
86∑

j=44

Xj +
342∑

j=172

Xj
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Perspectives

To complete our Maple program,

To try to generalize the Theorem 2 for n > k − 1,

To extend our study to the isochronous complex Hamiltonian
case.
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Thank your for your attention !
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