Tight and rigorous error bounds for basic building blocks of double-word arithmetic

Mioara Joldes, Jean-Michel Muller, Valentina Popescu

JNCF - January 2017

$$
\text { Lip } \overline{\text { LAAS-CNRS }}
$$

Floating point arithmetics

A real number X is approximated in a machine by a rational

$$
x=M_{x} \cdot 2^{e_{x}-p+1}
$$

- M_{x} is the significand, a signed integer number of p digits in radix 2 s.t. $2^{p-1} \leq\left|M_{x}\right| \leq 2^{p}-1$;
$-e_{x}$ is the exponent, a signed integer $\left(e_{\min } \leq e_{x} \leq e_{\max }\right)$.

Floating point arithmetics

A real number X is approximated in a machine by a rational

$$
x=M_{x} \cdot 2^{e_{x}-p+1}
$$

- M_{x} is the significand, a signed integer number of p digits in radix 2 s.t.

$$
2^{p-1} \leq\left|M_{x}\right| \leq 2^{p}-1 ;
$$

$-e_{x}$ is the exponent, a signed integer $\left(e_{\min } \leq e_{x} \leq e_{\max }\right)$.

IEEE 754-2008: Most common formats

- Single (binary32) precision format:

1	8	23
s	e	m

- Double (binary64) precision format:

1	11	52
s	e	m

Floating point arithmetics

A real number X is approximated in a machine by a rational

$$
x=M_{x} \cdot 2^{e_{x}-p+1}
$$

- M_{x} is the significand, a signed integer number of p digits in radix 2 s.t.
$2^{p-1} \leq\left|M_{x}\right| \leq 2^{p}-1$;
$-e_{x}$ is the exponent, a signed integer ($e_{\min } \leq e_{x} \leq e_{\max }$).

IEEE 754-2008: Most common formats

- Single (binary32) precision format:

1	8	23
s	e	m

- Double (binary64) precision format:

1	11	52
s	e	m

Rounding modes

- 4 rounding modes: RD, RU, RZ, RN;
- Correct rounding for:,,$+- \times, \div, \sqrt{ }$;
- Portability, determinism.

Applications

\rightarrow Computations with increased (multiple) precision in numerical applications.

Chaotic dynamical systems:

- bifurcation analysis;
- compute periodic orbits (e.g., Hénon map, Lorenz
 attractor);
- celestial mechanics (e.g., stability of the solar system).
Experimental mathematics:
- computational geometry (e.g., kissing numbers);
- polynomial optimization etc.

What is a double-word number?

Definition:

A double-word number x is the unevaluated sum $x_{h}+x_{\ell}$ of two floating-point numbers x_{h} and x_{ℓ} such that

$$
x_{h}=\mathrm{RN}(x)
$$

What is a double-word number?

Definition:

A double-word number x is the unevaluated sum $x_{h}+x_{\ell}$ of two floating-point numbers x_{h} and x_{ℓ} such that

$$
x_{h}=\mathrm{RN}(x)
$$

\rightarrow Called double-double when using the binary64 standard format.

$$
\begin{aligned}
& \text { Example: } \pi \text { in double-double } \\
& \text { and } \quad p_{h}=11.001001000011111101101010100010001000010110100011000_{2}, \\
& \qquad p_{\ell}=1.0001101001100010011000110011000101000101110000000111_{2} \times 2^{-53} ; \\
& p_{h}+p_{\ell} \leftrightarrow 107 \text { bit FP approx. }
\end{aligned}
$$

Remark

\longrightarrow Not the same as IEEE 754-2008 standard's binary128/quadruple-precision.

Double-word (using binary64/double-precision):

Remark

\longrightarrow Not the same as IEEE 754-2008 standard's binary128/quadruple-precision.

> Double-word (using binary64/double-precision):

- "wobbling precision" ≥ 107 bits of precision;

Binary128/quadruple-precision:

- 113 bits of precision;

Remark

\longrightarrow Not the same as IEEE 754-2008 standard's binary128/quadruple-precision.

Double-word (using binary64/double-precision):

- "wobbling precision" ≥ 107 bits of precision;
- exponent range limited by binary64 (11 bits) i.e. -1022 to 1023;

Binary128/quadruple-precision:

- 113 bits of precision;
- larger exponent range (15 bits): -16382 to 16383 ;

Remark

\longrightarrow Not the same as IEEE 754-2008 standard's binary128/quadruple-precision.

Double-word (using binary64/double-precision):

- "wobbling precision" ≥ 107 bits of precision;
- exponent range limited by binary64 (11 bits) i.e. -1022 to 1023;
- lack of clearly defined rounding modes;

Binary128/quadruple-precision:

- 113 bits of precision;
- larger exponent range (15 bits): -16382 to 16383 ;
- defined with all rounding modes

Remark

\longrightarrow Not the same as IEEE 754-2008 standard's binary128/quadruple-precision.

Double-word (using binary64/double-precision):

- "wobbling precision" ≥ 107 bits of precision;
- exponent range limited by binary64 (11 bits) i.e. -1022 to 1023;
- lack of clearly defined rounding modes;
- manipulated using error-free transforms (next slide).

Binary128/quadruple-precision:

- 113 bits of precision;
- larger exponent range (15 bits): -16382 to 16383 ;
- defined with all rounding modes
- not implemented in hardware on widely available processors.

Error-Free Transforms

Theorem 1 (2Sum algorithm)

Let a and b be FP numbers. Algorithm 2Sum computes two FP numbers s and e that satisfy the following:

- $s+e=a+b$ exactly;
- $s=R N(a+b)$.
($R N$ stands for performing the operation in rounding to nearest rounding mode.)

Algorithm 1 (2Sum $(a, b))$

```
\(s \leftarrow R N(a+b)\)
\(t \leftarrow R N(s-b)\)
\(e \leftarrow R N(R N(a-t)+R N(b-R N(s-t)))\)
return \((s, e)\)
```

$\longrightarrow 6$ FP operations (proved to be optimal unless we have information on the ordering of $|a|$ and $|b|$)

Error-Free Transforms

Theorem 2 (Fast2Sum algorithm)

Let a and b be FP numbers that satisfy $e_{a} \geq e_{b}(|a| \geq|b|)$. Algorithm Fast2Sum computes two FP numbers s and e that satisfy the following:

- $s+e=a+b$ exactly;
- $s=R N(a+b)$.

Algorithm 2 (Fast2Sum (a, b))

$s \leftarrow R N(a+b)$
$z \leftarrow R N(s-a)$
$e \leftarrow R N(b-z)$
return (s, e)
$\longrightarrow 3$ FP operations

Error-Free Transforms

Theorem 3 (2ProdFMA algorithm)

Let a and b be FP numbers, $e_{a}+e_{b} \geq e_{\min }+p-1$. Algorithm 2ProdFMA computes two FP numbers p and e that satisfy the following:

- $p+e=a \cdot b$ exactly;
- $p=R N(a \cdot b)$.

Algorithm 3 (2ProdFMA (a, b))

$$
\begin{aligned}
& p \leftarrow R N(a \cdot b) \\
& e \leftarrow f m a(a, b,-p) \\
& \text { return }(p, e)
\end{aligned}
$$

$\longrightarrow 2$ FP operations
\longrightarrow hardware-implemented FMA available in latest processors.

Previous work:

- concept introduced by Dekker [DEK71] together with some algorithms for basic operations;
- Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider format;
- library written by Briggs [BRI98] - that is no longer maintained;
- QD library written by Bailey [Li.et.al02].

Previous work:

- concept introduced by Dekker [DEK71] together with some algorithms for basic operations;
- Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider format;
- library written by Briggs [BRI98] - that is no longer maintained;
- QD library written by Bailey [Li.et.al02].

Problems:

1. most algorithms come without correctness proof and error bound;
2. some error bounds published without a proof;
3. differences between published and implemented algorithms.

Previous work:

- concept introduced by Dekker [DEK71] together with some algorithms for basic operations;
- Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider format;
- library written by Briggs [BRI98] - that is no longer maintained;
- QD library written by Bailey [Li.et.al02].

Problems:

1. most algorithms come without correctness proof and error bound;
2. some error bounds published without a proof;
3. differences between published and implemented algorithms.
\longrightarrow Strong need to "clean up" the existing literature.

Previous work:

- concept introduced by Dekker [DEK71] together with some algorithms for basic operations;
- Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider format;
- library written by Briggs [BRI98] - that is no longer maintained;
- QD library written by Bailey [Li.et.al02].

Problems:

1. most algorithms come without correctness proof and error bound;
2. some error bounds published without a proof;
3. differences between published and implemented algorithms.
\longrightarrow Strong need to "clean up" the existing literature.

Notation:

- p represents the precision of the underlying FP format;
- ulp $(x)=2^{\left.\log _{2}|x|\right\rfloor-p+1}$, for $x \neq 0$;
- $u=2^{-p}=\frac{1}{2} u l p(1)$ denotes the roundoff error unit.

Addition: DWPlusFP $\left(x_{h}, x_{\ell}, y\right)$

Algorithm 4

$$
\begin{aligned}
& \text { 1: }\left(s_{h}, s_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h}, y\right) \\
& \text { 2: } v \leftarrow R N\left(x_{\ell}+s_{\ell}\right) \\
& \text { 3: }\left(z_{h}, z_{\ell}\right) \leftarrow \operatorname{Fast2Sum}\left(s_{h}, v\right) \\
& \text { 4: return }\left(z_{h}, z_{\ell}\right)
\end{aligned}
$$

- implemented in the QD library;
- no previous error bound published;
- relative error bounded by

$$
\frac{2 \cdot 2^{-2 p}}{1-2 \cdot 2^{-p}}=2 \cdot 2^{-2 p}+4 \cdot 2^{-3 p}+8 \cdot 2^{-4 p}+\cdots
$$

which is less than $2 \cdot 2^{-2 p}+5 \cdot 2^{-3 p}$ as soon as $p \geq 4$;

Addition: DWPlusFP $\left(x_{h}, x_{\ell}, y\right)$

Algorithm 4

$$
\begin{aligned}
& \text { 1: }\left(s_{h}, s_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h}, y\right) \\
& \text { 2: } v \leftarrow R N\left(x_{\ell}+s_{\ell}\right) \\
& \text { 3: }\left(z_{h}, z_{\ell}\right) \leftarrow \operatorname{Fast2Sum}\left(s_{h}, v\right) \\
& \text { 4: return }\left(z_{h}, z_{\ell}\right)
\end{aligned}
$$

- implemented in the QD library;
- no previous error bound published;
- relative error bounded by

$$
\frac{2 \cdot 2^{-2 p}}{1-2 \cdot 2^{-p}}=2 \cdot 2^{-2 p}+4 \cdot 2^{-3 p}+8 \cdot 2^{-4 p}+\cdots
$$

which is less than $2 \cdot 2^{-2 p}+5 \cdot 2^{-3 p}$ as soon as $p \geq 4$;

Asymptotically optimal bound

Let $x_{h}=1, x_{\ell}=\left(2^{p}-1\right) \cdot 2^{-2 p}$, and $y=-\frac{1}{2}\left(1-2^{-p}\right)$. Then:
$-z_{h}+z_{\ell}=\frac{1}{2}+3 \cdot 2^{-p-1}$ and;
$-x+y=\frac{1}{2}+3 \cdot 2^{-p-1}-2^{-2 p}$;

- relative error

$$
\frac{2 \cdot 2^{-2 p}}{1+3 \cdot 2^{-p}-2 \cdot 2^{-2 p}} \approx 2 \cdot 2^{-2 p}-6 \cdot 2^{-3 p}
$$

Sketch of the proof

Lemma 4 (Sterbenz Lemma)

Let a and b be two positive FP numbers. If

$$
\frac{a}{2} \leq b \leq 2 a
$$

then $a-b$ is a floating-point number, so that $R N(a-b)=a-b$.

Lemma 5

Let a and b be FP numbers, and let $s=R N(a+b)$. If $s \neq 0$ then

$$
s \geq \max \left\{\frac{1}{2} u l p(a), \frac{1}{2} u l p(b)\right\}
$$

Sketch of the proof

W.I.o.g. $\left|x_{h}\right| \geq|y| ; x_{h}$ positive; $1 \leq x_{h} \leq 2-2 u$.

Sketch of the proof

W.I.o.g. $\left|x_{h}\right| \geq|y| ; x_{h}$ positive; $1 \leq x_{h} \leq 2-2 u$.
[Case1:] If $-\boldsymbol{x}_{\boldsymbol{h}} \leq \boldsymbol{y} \leq-\boldsymbol{x}_{\boldsymbol{h}} / \mathbf{2}$: from Sterbenz Lemma $s_{h}=x_{h}+y$ and $s_{\ell}=0$. From Lemma $5\left|s_{h}\right| \geq \frac{1}{2}$ ulp $\left(x_{h}\right)$, so $\left|s_{h}\right| \geq\left|x_{\ell}\right|$.
Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that $z_{h}+z_{\ell}=s_{h}+v=x+y$ exactly.

Sketch of the proof

W.I.o.g. $\left|x_{h}\right| \geq|y| ; x_{h}$ positive; $1 \leq x_{h} \leq 2-2 u$.
[Case1:] If $-\boldsymbol{x}_{\boldsymbol{h}} \leq \boldsymbol{y} \leq-\boldsymbol{x}_{\boldsymbol{h}} / \mathbf{2}$: from Sterbenz Lemma $s_{h}=x_{h}+y$ and $s_{\ell}=0$.
From Lemma $5\left|s_{h}\right| \geq \frac{1}{2}$ ulp $\left(x_{h}\right)$, so $\left|s_{h}\right| \geq\left|x_{\ell}\right|$.
Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that
$z_{h}+z_{\ell}=s_{h}+v=x+y$ exactly.
[Case2:] If $-\boldsymbol{x}_{\boldsymbol{h}} / \mathbf{2}<\boldsymbol{y} \leq \boldsymbol{x}_{\boldsymbol{h}}$, then $\frac{1}{2} \leq \frac{x_{h}}{2}<x_{h}+y \leq 2 x_{h}$, so that $s_{h} \geq 1 / 2$. One can prove that $\left|x_{\ell}+y_{\ell}\right| \leq 3 u$ (two cases), so $|v| \leq 3 u$, s.t. $s_{h}>|v|$: we can use Algorithm Fast2Sum at line 3 of the algorithm.

Sketch of the proof

W.I.o.g. $\left|x_{h}\right| \geq|y| ; x_{h}$ positive; $1 \leq x_{h} \leq 2-2 u$.
[Case1:] If $-\boldsymbol{x}_{\boldsymbol{h}} \leq \boldsymbol{y} \leq-\boldsymbol{x}_{\boldsymbol{h}} / \mathbf{2}$: from Sterbenz Lemma $s_{h}=x_{h}+y$ and $s_{\ell}=0$.
From Lemma $5\left|s_{h}\right| \geq \frac{1}{2}$ ulp $\left(x_{h}\right)$, so $\left|s_{h}\right| \geq\left|x_{\ell}\right|$.
Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that
$z_{h}+z_{\ell}=s_{h}+v=x+y$ exactly.
[Case2:] If $-\boldsymbol{x}_{\boldsymbol{h}} / \mathbf{2}<\boldsymbol{y} \leq \boldsymbol{x}_{\boldsymbol{h}}$, then $\frac{1}{2} \leq \frac{x_{h}}{2}<x_{h}+y \leq 2 x_{h}$, so that $s_{h} \geq 1 / 2$. One can prove that $\left|x_{\ell}+y_{\ell}\right| \leq 3 u$ (two cases), so $|v| \leq 3 u$, s.t. $s_{h}>|v|$: we can use Algorithm Fast2Sum at line 3 of the algorithm.
[Case2a:] If $\boldsymbol{x}_{\boldsymbol{h}}+\boldsymbol{y} \leq \mathbf{2}$ then $\left|s_{\ell}\right| \leq u$, so that $\left|x_{\ell}+s_{\ell}\right| \leq 2 u$, hence, $v=x_{\ell}+s_{\ell}+\varepsilon$, with $|\varepsilon| \leq u^{2}$.
Therefore $z_{h}+z_{\ell}=s_{h}+v=x+y+\varepsilon$ and the relative error

$$
\frac{\varepsilon}{|x+y|} \leq \frac{\varepsilon}{\frac{1}{2}-u} \leq \frac{2 u^{2}}{1-2 u}
$$

Addition: AccurateDWPlusDW $\left(x_{h}, x_{\ell}, y_{h}, y_{\ell}\right)$

Algorithm 5

$$
\begin{aligned}
& \text { 1: }\left(s_{h}, s_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h}, y_{h}\right) \\
& \text { 2: }\left(t_{h}, t_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{\ell}, y_{\ell}\right) \\
& \text { 3: } c \leftarrow R N\left(s_{\ell}+t_{h}\right) \\
& \text { 4: }\left(v_{h}, v_{\ell}\right) \leftarrow \operatorname{Fast2\operatorname {Sum}(s_{h},c)} \\
& \text { 5: } w \leftarrow R N\left(t_{\ell}+v_{\ell}\right) \\
& \text { 6: }\left(z_{h}, z_{\ell}\right) \leftarrow \operatorname{Fast2\operatorname {Sum}(v_{h},w)} \\
& \text { 7: return }\left(z_{h}, z_{\ell}\right)
\end{aligned}
$$

- previously published relative error bound [Li.et.al02]: $2 \cdot 2^{-2 p}$;

Addition: AccurateDWPlusDW $\left(x_{h}, x_{\ell}, y_{h}, y_{\ell}\right)$

Algorithm 5

$$
\begin{aligned}
& \text { 1: }\left(s_{h}, s_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h}, y_{h}\right) \\
& \text { 2: }\left(t_{h}, t_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{\ell}, y_{\ell}\right) \\
& \text { 3: } c \leftarrow R N\left(s_{\ell}+t_{h}\right) \\
& \text { 4: }\left(v_{h}, v_{\ell}\right) \leftarrow \operatorname{Fast2\operatorname {Sum}(s_{h},c)} \\
& \text { 5: } w \leftarrow R N\left(t_{\ell}+v_{\ell}\right) \\
& \text { 6: }\left(z_{h}, z_{\ell}\right) \leftarrow \operatorname{Fast2\operatorname {Sum}(v_{h},w)} \\
& \text { 7: return }\left(z_{h}, z_{\ell}\right)
\end{aligned}
$$

- previously published relative error bound [Li.et.al02]: $2 \cdot 2^{-2 p}$;
- FALSE, showed by the counterexample:

$$
\begin{gathered}
x_{h}=2^{p}-1, x_{\ell}=-\left(2^{p}-1\right) \cdot 2^{-p-1} \\
y_{h}=-\left(2^{p}-5\right) / 2, y_{\ell}=-\left(2^{p}-1\right) \cdot 2^{-p-3}
\end{gathered}
$$

which leads to a relative error asymptotically equivalent to $2.25 \times 2^{-2 p}$;

Addition: AccurateDWPlusDW $\left(x_{h}, x_{\ell}, y_{h}, y_{\ell}\right)$

Algorithm 5

```
    1: \(\left(s_{h}, s_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h}, y_{h}\right)\)
    2: \(\left(t_{h}, t_{\ell}\right) \leftarrow 2 \operatorname{Sum}\left(x_{\ell}, y_{\ell}\right)\)
    3: \(c \leftarrow R N\left(s_{\ell}+t_{h}\right)\)
    4: \(\left(v_{h}, v_{\ell}\right) \leftarrow\) Fast2Sum \(\left(s_{h}, c\right)\)
    5: \(w \leftarrow R N\left(t_{\ell}+v_{\ell}\right)\)
    6: \(\left(z_{h}, z_{\ell}\right) \leftarrow \operatorname{Fast2Sum}\left(v_{h}, w\right)\)
    7: return \(\left(z_{h}, z_{\ell}\right)\)
```

- previously published relative error bound [Li.et.al02]: $2 \cdot 2^{-2 p}$;
- FALSE, showed by the counterexample:

$$
\begin{gathered}
x_{h}=2^{p}-1, x_{\ell}=-\left(2^{p}-1\right) \cdot 2^{-p-1} \\
y_{h}=-\left(2^{p}-5\right) / 2, y_{\ell}=-\left(2^{p}-1\right) \cdot 2^{-p-3}
\end{gathered}
$$

which leads to a relative error asymptotically equivalent to $2.25 \times 2^{-2 p}$; - rigorous proven error bound less than

$$
3 \cdot 2^{-2 p}+13 \cdot 2^{-3 p}
$$

as soon as $p \geq 6$;

- sloppy version available, but less accurate.

Multiplication: DWTimesFP $\left(x_{h}, x_{\ell}, y\right)$

Algorithm 6

$$
\begin{aligned}
& \text { 1: }\left(c_{h}, c_{\ell 1}\right) \leftarrow \text { Fast2Mult }\left(x_{h}, y\right) \\
& \text { 2: } c_{\ell 2} \leftarrow R N\left(x_{\ell} \cdot y\right) \\
& \text { 3: } c_{\ell 3} \leftarrow R N\left(c_{\ell 1}+c_{\ell 2}\right) \\
& \text { 4: }\left(z_{h}, z_{\ell}\right) \leftarrow \text { Fast2Sum }\left(c_{h}, c_{\ell 3}\right) \\
& \text { 5: return }\left(z_{h}, z_{\ell}\right)
\end{aligned}
$$

- implemented in Briggs and Bailey's libraries;
- no previously published error bound;
- we proved that if $p \geq 3$ the relative error is less than

$$
3 \cdot 2^{-2 p}
$$

- speed and accuracy can be improved if an FMA instruction is available (merging lines 2 and 3).

Multiplication: DWTimesDW $\left(x_{h}, x_{\ell}, y_{h}, y_{\ell}\right)$

Algorithm 7

$$
\begin{aligned}
& \text { 1: }\left(c_{h}, c_{\ell 1}\right) \leftarrow \text { Fast2Mult }\left(x_{h}, y_{h}\right) \\
& \text { 2: } t_{\ell 1} \leftarrow R N\left(x_{h} \cdot y_{\ell}\right) \\
& \text { 3: } t_{\ell 2} \leftarrow R N\left(x_{\ell} \cdot y_{h}\right) \\
& \text { 4: } c_{\ell 2} \leftarrow R N\left(t_{\ell 1}+t_{\ell 2}\right) \\
& \text { 5: } c_{\ell 3} \leftarrow R N\left(c_{\ell 1}+c_{\ell 2}\right) \\
& \text { 6: }\left(z_{h}, z_{\ell}\right) \leftarrow \text { Fast2Sum }\left(c_{h}, c_{\ell 3}\right) \\
& \text { 7: return }\left(z_{h}, z_{\ell}\right)
\end{aligned}
$$

- suggested by Dekker and implemented in Briggs and Bailey's libraries;
- Dekker proved a relative error bound of $11 \cdot 2^{-2 p}$;
- we improved it, proving that if $p \geq 4$ the relative error is less than

$$
7 \cdot 2^{-2 p}
$$

- speed and accuracy can be improved if an FMA instruction is available.

Division: DWDivFP1 $\left(x_{h}, x_{\ell}, y\right)$

Algorithm 8

$$
\begin{aligned}
& \text { 1: } t_{h} \leftarrow R N\left(x_{h} / y\right) \\
& \text { 2: }\left(\pi_{h}, \pi_{\ell}\right) \leftarrow \text { Fast2Mult }\left(t_{h}, y\right) \\
& \text { 3: }\left(\delta_{h}, \delta^{\prime}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h},-\pi_{h}\right) \\
& \text { 4: } \delta^{\prime \prime} \leftarrow R N\left(x_{\ell}-\pi_{\ell}\right) \\
& \text { 5: } \delta_{\ell} \leftarrow R N\left(\delta^{\prime}+\delta^{\prime \prime}\right) \\
& \text { 6: } \delta \leftarrow R N\left(\delta_{h}+\delta_{\ell}\right) \\
& \text { 7: } t_{\ell} \leftarrow R N(\delta / y) \\
& \text { 8: }\left(z_{h}, z_{\ell}\right) \leftarrow \text { Fast2Sum }\left(t_{h}, t_{\ell}\right) \\
& \text { 9: return }\left(z_{h}, z_{\ell}\right)
\end{aligned}
$$

- algorithm suggested by Bailey;
- previously known error bound [Li.et.al02] of $4 \cdot 2^{-2 p}$;

Division: DWDivFP1 $\left(x_{h}, x_{\ell}, y\right)$

Algorithm 8

$$
\begin{aligned}
& \text { 1: } t_{h} \leftarrow R N\left(x_{h} / y\right) \\
& \text { 2: }\left(\pi_{h}, \pi_{\ell}\right) \leftarrow \text { Fast2Mult }\left(t_{h}, y\right) \\
& \text { 3: }\left(\delta_{h}, \delta^{\prime}\right) \leftarrow 2 \operatorname{Sum}\left(x_{h},-\pi_{h}\right) \\
& \text { 4: } \delta^{\prime \prime} \leftarrow R N\left(x_{\ell}-\pi_{\ell}\right) \\
& \text { 5: } \delta_{\ell} \leftarrow R N\left(\delta^{\prime}+\delta^{\prime \prime}\right) \\
& \text { 6: } \delta \leftarrow R N\left(\delta_{h}+\delta_{\ell}\right) \\
& \text { 7: } t_{\ell} \leftarrow R N(\delta / y) \\
& \text { 8: }\left(z_{h}, z_{\ell}\right) \leftarrow \text { Fast2Sum }\left(t_{h}, t_{\ell}\right) \\
& \text { 9: return }\left(z_{h}, z_{\ell}\right)
\end{aligned}
$$

- algorithm suggested by Bailey;
- previously known error bound [Li.et.al02] of $4 \cdot 2^{-2 p}$;
- Improvement: we showed that the addition in line 3 is always exact.
\Longrightarrow new algorithm

Division: DWDivFP2 $\left(x_{h}, x_{\ell}, y\right)$

Algorithm 9

$$
\begin{aligned}
& \text { 1: } t_{h} \leftarrow R N\left(x_{h} / y\right) \\
& \text { 2: }\left(\pi_{h}, \pi_{\ell}\right) \leftarrow \text { Fast2Mult }\left(t_{h}, y\right) \\
& \text { 3: } \delta_{h} \leftarrow R N\left(x_{h}-\pi_{h}\right) \\
& \text { 4: } \delta_{\ell} \leftarrow R N\left(x_{\ell}-\pi_{\ell}\right) \\
& \text { 5: } \delta \leftarrow R N\left(\delta_{h}+\delta_{\ell}\right) \\
& \text { 6: } t_{\ell} \leftarrow R N(\delta / y) \\
& \text { 7: }\left(z_{h}, z_{\ell}\right) \leftarrow \text { Fast2Sum }\left(t_{h}, t_{\ell}\right) \\
& \text { 8: return }\left(z_{h}, z_{\ell}\right)
\end{aligned}
$$

- less FP operations, but mathematically equivalent;
- slightly improved error bound:

$$
\frac{7}{2} \cdot 2^{-2 p}
$$

as soon as $p \geq 4$.

Algorithm	Previously known bound	Our bound	Largest relative error found in experiments	\sharp of FP ops
DWPlusFP	$?$	$2 u^{2}+5 u^{3}$	$2 u^{2}-6 u^{3}$	10
SloppyDWPlusDW	N / A	N / A	1	11
AccurateDWPlusDW	$2 u^{2}$ (wrong)	$3 u^{2}+13 u^{3}$	$2.25 u^{2}$	20
DWTimesFP1	$4 u^{2}$	$2 u^{2}$	$1.5 u^{2}$	10
DWTimesFP2	$?$	$3 u^{2}$	$2.517 u^{2}$	7
DWTimesFP3 (fma)	N / A	$2 u^{2}$	$1.984 u^{2}$	6
DWTimesDW1	$11 u^{2}$	$7 u^{2}$	$4.9916 u^{2}$	9
DWTimesDW2 (fma)	N / A	$5 u^{2}$	$3.936 u^{2}$	9
DWDivFP1*	$4 u^{2}$	$3.5 u^{2}$	$2.95 u^{2}$	16
DWDivFP2* $^{\text {DWDivDW1* }}$	N / A	$3.5 u^{2}$	$2.95 u^{2}$	10
DWDivDW2*	$?$	$15 u^{2}+56 u^{3}$	$8.465 u^{2}$	24
DWDivDW3 (fma) $^{\text {DW }}$ (A	N / A	$15 u^{2}+56 u^{3}$	$8.465 u^{2}$	18

Conclusions

- many similar algorithms with small differences;
- no correctness proofs and error bounds;
- need to clean up the literature and implementation;

Tight and rigorous error bounds for basic building blocks of double-word arithmetic. Submitted to ACM TOMS journal. hal.archives-ouvertes.fr/hal-01351529

Conclusions

- many similar algorithms with small differences;
- no correctness proofs and error bounds;
- need to clean up the literature and implementation;
+ we looked at 13 algorithms, both old and new;
+ we compared them and provided correctness proofs and error bounds;
+ code available online at: http://homepages.laas.fr/mmjoldes/campary/.

Tight and rigorous error bounds for basic building blocks of double-word arithmetic. Submitted to ACM TOMS journal. hal.archives-ouvertes.fr/hal-01351529

