Tight and rigorous error bounds for basic building blocks of double-word arithmetic

Mioara Joldes, Jean-Michel Muller, Valentina Popescu

JNCF - January 2017

Floating point arithmetics

A real number X is approximated in a machine by a rational

$$x = M_x \cdot 2^{e_x - p + 1},$$

 $-M_x$ is the significand, a signed integer number of p digits in radix 2 s.t. $2^{p-1} \le |M_x| \le 2^p - 1;$ $-e_x$ is the exponent, a signed integer $(e_{min} \le e_x \le e_{max}).$

Floating point arithmetics

A real number X is approximated in a machine by a rational

$$x = M_x \cdot 2^{e_x - p + 1},$$

 $-M_x$ is the significand, a signed integer number of p digits in radix 2 s.t. $2^{p-1} \le |M_x| \le 2^p - 1;$ $-e_x$ is the exponent, a signed integer $(e_{min} \le e_x \le e_{max}).$

IEEE 754-2008: Most common formats

• Single (binary32) precision format:

1	8	23
s	e	m

• Double (*binary*64) precision format:

1 11		52		
s	e	m		

Floating point arithmetics

A real number \boldsymbol{X} is approximated in a machine by a rational

$$x = M_x \cdot 2^{e_x - p + 1},$$

 $-M_x$ is the significand, a signed integer number of p digits in radix 2 s.t. $2^{p-1} \le |M_x| \le 2^p - 1;$ $-e_x$ is the exponent, a signed integer $(e_{min} \le e_x \le e_{max}).$

IEEE 754-2008: Most common formats

• Single (*binary*32) precision format:

• Double (*binary*64) precision format:

Rounding modes

- 4 rounding modes: RD, RU, RZ, RN;
- Correct rounding for: $+, -, \times, \div, \sqrt{}$;
- Portability, determinism.

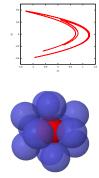
 \rightarrow Computations with increased (multiple) precision in numerical applications.

Chaotic dynamical systems:

- bifurcation analysis;
- compute periodic orbits (e.g., Hénon map, Lorenz attractor);
- celestial mechanics (e.g., stability of the solar system).

Experimental mathematics:

- computational geometry (e.g., kissing numbers);
- polynomial optimization etc.



Definition:

A double-word number x is the unevaluated sum x_h+x_ℓ of two floating-point numbers x_h and x_ℓ such that

 $x_h = \mathsf{RN}(x).$

Definition:

A *double-word* number x is the unevaluated sum x_h+x_ℓ of two floating-point numbers x_h and x_ℓ such that

 $x_h = \mathsf{RN}(x).$

 \rightarrow Called *double-double* when using the *binary64* standard format.

Example: π in double-double

and

 $p_h + p_\ell \leftrightarrow 107$ bit FP approx.

Double-word (using *binary64/double*-precision):

Double-word (using *binary64/double*-precision):

• "wobbling precision" ≥ 107 bits of precision;

Binary128/quadruple-precision:

113 bits of precision;

Double-word (using *binary64/double*-precision):

- "wobbling precision" ≥ 107 bits of precision;
- exponent range limited by binary64 (11 bits) i.e. -1022 to 1023;

- 113 bits of precision;
- larger exponent range (15 bits): -16382 to 16383;

Double-word (using *binary64/double*-precision):

- "wobbling precision" ≥ 107 bits of precision;
- exponent range limited by binary64 (11 bits) i.e. -1022 to 1023;
- lack of clearly defined rounding modes;

- 113 bits of precision;
- larger exponent range (15 bits): -16382 to 16383;
- defined with all rounding modes

Double-word (using *binary64/double*-precision):

- "wobbling precision" ≥ 107 bits of precision;
- exponent range limited by binary64 (11 bits) i.e. -1022 to 1023;
- lack of clearly defined rounding modes;
- manipulated using error-free transforms (next slide).

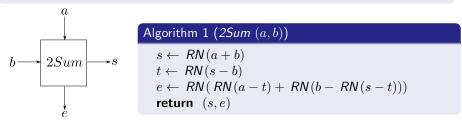
- 113 bits of precision;
- larger exponent range (15 bits): -16382 to 16383;
- defined with all rounding modes
- not implemented in hardware on widely available processors.

Theorem 1 (2Sum algorithm)

Let a and b be FP numbers. Algorithm 2Sum computes two FP numbers s and e that satisfy the following:

- s + e = a + b exactly;
- s = RN(a+b).

(RN stands for performing the operation in rounding to nearest rounding mode.)



 $\longrightarrow 6~{\rm FP}$ operations (proved to be optimal unless we have information on the ordering of |a| and |b|)

Theorem 2 (Fast2Sum algorithm)

Let a and b be FP numbers that satisfy $e_a \ge e_b(|a| \ge |b|)$. Algorithm Fast2Sum computes two FP numbers s and e that satisfy the following:

- s + e = a + b exactly;
- s = RN(a+b).

Algorithm 2 (Fast2Sum(a, b))

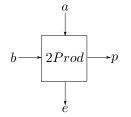
 $\begin{array}{l} s \leftarrow {\sf RN}\left(a+b\right) \\ z \leftarrow {\sf RN}\left(s-a\right) \\ e \leftarrow {\sf RN}\left(b-z\right) \\ {\sf return} \quad (s,e) \end{array}$

 $\longrightarrow 3 \text{ FP}$ operations

Theorem 3 (2ProdFMA algorithm)

Let a and b be FP numbers, $e_a + e_b \ge e_{min} + p - 1$. Algorithm 2ProdFMA computes two FP numbers p and e that satisfy the following:

- $p + e = a \cdot b$ exactly;
- $p = RN(a \cdot b).$



Algorithm 3 (2ProdFMA(a, b))

$$\begin{array}{l} p \leftarrow \textit{RN}(a \cdot b) \\ e \leftarrow \textit{fma}(a, b, -p) \\ \textbf{return} \quad (p, e) \end{array}$$

 $\longrightarrow 2 \text{ FP}$ operations

 \longrightarrow hardware-implemented FMA available in latest processors.

- concept introduced by Dekker [DEK71] together with some algorithms for basic operations;
- Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider format;
- library written by Briggs [BRI98] that is no longer maintained;
- QD library written by Bailey [Li.et.al02].

- concept introduced by Dekker [DEK71] together with some algorithms for basic operations;
- Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider format;
- library written by Briggs [BRI98] that is no longer maintained;
- QD library written by Bailey [Li.et.al02].

Problems:

- 1. most algorithms come without correctness proof and error bound;
- 2. some error bounds published without a proof;
- 3. differences between published and implemented algorithms.

- concept introduced by Dekker [DEK71] together with some algorithms for basic operations;
- Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider format;
- library written by Briggs [BRI98] that is no longer maintained;
- QD library written by Bailey [Li.et.al02].

Problems:

- 1. most algorithms come without correctness proof and error bound;
- 2. some error bounds published without a proof;
- 3. differences between published and implemented algorithms.

 \longrightarrow Strong need to "clean up" the existing literature.

- concept introduced by Dekker [DEK71] together with some algorithms for basic operations;
- Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider format;
- library written by Briggs [BRI98] that is no longer maintained;
- QD library written by Bailey [Li.et.al02].

Problems:

- 1. most algorithms come without correctness proof and error bound;
- 2. some error bounds published without a proof;
- 3. differences between published and implemented algorithms.

 \longrightarrow Strong need to "clean up" the existing literature.

Notation:

- $\bullet\ p$ represents the precision of the underlying FP format;
- $ulp(x) = 2^{\lfloor \log_2 |x| \rfloor p + 1}$, for $x \neq 0$;
- $u = 2^{-p} = \frac{1}{2} \operatorname{ulp}(1)$ denotes the roundoff error unit.

Addition: **DWPlusFP** (x_h, x_ℓ, y)

Algorithm 4

1:
$$(s_h, s_\ell) \leftarrow 2Sum(x_h, y)$$

2: $v \leftarrow RN(x_\ell + s_\ell)$
3: $(z_h, z_\ell) \leftarrow Fast2Sum(s_h, v)$
4: return (z_h, z_ℓ)

- implemented in the QD library;
- no previous error bound published;
- relative error bounded by

$$\frac{2 \cdot 2^{-2p}}{1 - 2 \cdot 2^{-p}} = 2 \cdot 2^{-2p} + 4 \cdot 2^{-3p} + 8 \cdot 2^{-4p} + \cdots,$$

which is less than $2 \cdot 2^{-2p} + 5 \cdot 2^{-3p}$ as soon as $p \ge 4$;

Addition: **DWPlusFP** (x_h, x_ℓ, y)

Algorithm 4

1:
$$(s_h, s_\ell) \leftarrow 2Sum(x_h, y)$$

2: $v \leftarrow RN(x_\ell + s_\ell)$
3: $(z_h, z_\ell) \leftarrow Fast2Sum(s_h, v)$
4: return (z_h, z_ℓ)

- implemented in the QD library;
- no previous error bound published;
- relative error bounded by

$$\frac{2 \cdot 2^{-2p}}{1 - 2 \cdot 2^{-p}} = 2 \cdot 2^{-2p} + 4 \cdot 2^{-3p} + 8 \cdot 2^{-4p} + \cdots,$$

which is less than $2 \cdot 2^{-2p} + 5 \cdot 2^{-3p}$ as soon as $p \ge 4$;

Asymptotically optimal bound

Let
$$x_h = 1$$
, $x_\ell = (2^p - 1) \cdot 2^{-2p}$, and $y = -\frac{1}{2}(1 - 2^{-p})$. Then:
 $-z_h + z_\ell = \frac{1}{2} + 3 \cdot 2^{-p-1}$ and;
 $-x + y = \frac{1}{2} + 3 \cdot 2^{-p-1} - 2^{-2p}$;
 $-$ relative error
 $\frac{2 \cdot 2^{-2p}}{1 + 3 \cdot 2^{-p} - 2 \cdot 2^{-2p}} \approx 2 \cdot 2^{-2p} - 6 \cdot 2^{-3p}$.

Lemma 4 (Sterbenz Lemma)

Let a and b be two positive FP numbers. If

$$\frac{a}{2} \le b \le 2a,$$

then a - b is a floating-point number, so that RN(a - b) = a - b.

Lemma 5

Let a and b be FP numbers, and let s = RN(a+b). If $s \neq 0$ then

$$s \geq \max\left\{ \frac{1}{2} u l p(a), \frac{1}{2} u l p(b)
ight\}.$$

[Case1:] If $-x_h \leq y \leq -x_h/2$: from Sterbenz Lemma $s_h = x_h + y$ and $s_\ell = 0$. From Lemma 5 $|s_h| \geq \frac{1}{2} \operatorname{ulp}(x_h)$, so $|s_h| \geq |x_\ell|$. Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that $z_h + z_\ell = s_h + v = x + y$ exactly.

[Case1:] If $-x_h \leq y \leq -x_h/2$: from Sterbenz Lemma $s_h = x_h + y$ and $s_\ell = 0$. From Lemma 5 $|s_h| \geq \frac{1}{2} \operatorname{ulp}(x_h)$, so $|s_h| \geq |x_\ell|$. Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that $z_h + z_\ell = s_h + v = x + y$ exactly.

[Case2:] If $-x_h/2 < y \leq x_h$, then $\frac{1}{2} \leq \frac{x_h}{2} < x_h + y \leq 2x_h$, so that $s_h \geq 1/2$. One can prove that $|x_\ell + y_\ell| \leq 3u$ (two cases), so $|v| \leq 3u$, s.t. $s_h > |v|$: we can use Algorithm Fast2Sum at line 3 of the algorithm.

[Case1:] If $-x_h \leq y \leq -x_h/2$: from Sterbenz Lemma $s_h = x_h + y$ and $s_\ell = 0$. From Lemma 5 $|s_h| \geq \frac{1}{2} \operatorname{ulp}(x_h)$, so $|s_h| \geq |x_\ell|$. Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that $z_h + z_\ell = s_h + v = x + y$ exactly.

[Case2:] If $-x_h/2 < y \leq x_h$, then $\frac{1}{2} \leq \frac{x_h}{2} < x_h + y \leq 2x_h$, so that $s_h \geq 1/2$. One can prove that $|x_\ell + y_\ell| \leq 3u$ (two cases), so $|v| \leq 3u$, s.t. $s_h > |v|$: we can use Algorithm Fast2Sum at line 3 of the algorithm.

[Case2a:] If $x_h + y \leq 2$ then $|s_\ell| \leq u$, so that $|x_\ell + s_\ell| \leq 2u$, hence, $v = x_\ell + s_\ell + \varepsilon$, with $|\varepsilon| \leq u^2$. Therefore $z_h + z_\ell = s_h + v = x + y + \varepsilon$ and the relative error

$$\frac{\varepsilon}{|x+y|} \le \frac{\varepsilon}{\frac{1}{2}-u} \le \frac{2u^2}{1-2u}.$$

Addition: AccurateDWPlusDW $(x_h, x_\ell, y_h, y_\ell)$

Algorithm 5

1: $(s_h, s_\ell) \leftarrow 2Sum(x_h, y_h)$ 2: $(t_h, t_\ell) \leftarrow 2Sum(x_\ell, y_\ell)$ 3: $c \leftarrow RN(s_\ell + t_h)$ 4: $(v_h, v_\ell) \leftarrow Fast2Sum(s_h, c)$ 5: $w \leftarrow RN(t_\ell + v_\ell)$ 6: $(z_h, z_\ell) \leftarrow Fast2Sum(v_h, w)$ 7: return (z_h, z_ℓ)

- previously published relative error bound [Li.et.al02]: $2 \cdot 2^{-2p}$;

Addition: AccurateDWPlusDW $(x_h, x_\ell, y_h, y_\ell)$

Algorithm 5

1: $(s_h, s_\ell) \leftarrow 2Sum(x_h, y_h)$ 2: $(t_h, t_\ell) \leftarrow 2Sum(x_\ell, y_\ell)$ 3: $c \leftarrow RN(s_\ell + t_h)$ 4: $(v_h, v_\ell) \leftarrow Fast2Sum(s_h, c)$ 5: $w \leftarrow RN(t_\ell + v_\ell)$ 6: $(z_h, z_\ell) \leftarrow Fast2Sum(v_h, w)$ 7: return (z_h, z_ℓ)

– previously published relative error bound [Li.et.al02]: $2 \cdot 2^{-2p}$;

- FALSE, showed by the counterexample:

$$x_h = 2^p - 1, \ x_\ell = -(2^p - 1) \cdot 2^{-p-1},$$

 $y_h = -(2^p - 5)/2, \ y_\ell = -(2^p - 1) \cdot 2^{-p-3},$

which leads to a relative error asymptotically equivalent to 2.25×2^{-2p} ;

Addition: AccurateDWPlusDW $(x_h, x_\ell, y_h, y_\ell)$

Algorithm 5

1: $(s_h, s_\ell) \leftarrow 2Sum(x_h, y_h)$ 2: $(t_h, t_\ell) \leftarrow 2Sum(x_\ell, y_\ell)$ 3: $c \leftarrow RN(s_\ell + t_h)$ 4: $(v_h, v_\ell) \leftarrow Fast2Sum(s_h, c)$ 5: $w \leftarrow RN(t_\ell + v_\ell)$ 6: $(z_h, z_\ell) \leftarrow Fast2Sum(v_h, w)$ 7: return (z_h, z_ℓ)

– previously published relative error bound [Li.et.al02]: $2 \cdot 2^{-2p}$;

- FALSE, showed by the counterexample:

$$x_h = 2^p - 1, \ x_\ell = -(2^p - 1) \cdot 2^{-p-1},$$

 $y_h = -(2^p - 5)/2, \ y_\ell = -(2^p - 1) \cdot 2^{-p-3},$

which leads to a relative error asymptotically equivalent to 2.25×2^{-2p} ; - rigorous proven error bound less than

$$3 \cdot 2^{-2p} + 13 \cdot 2^{-3p},$$

as soon as $p \ge 6$;

- sloppy version available, but less accurate.

- 1: $(c_h, c_{\ell 1}) \leftarrow \mathsf{Fast2Mult}(x_h, y)$ 2: $c_{\ell 2} \leftarrow \mathsf{RN}(x_\ell \cdot y)$ 3: $c_{\ell 3} \leftarrow \mathsf{RN}(c_{\ell 1} + c_{\ell 2})$ 4: $(z_h, z_\ell) \leftarrow \mathsf{Fast2Sum}(c_h, c_{\ell 3})$ 5: return (z_h, z_ℓ)
- implemented in Briggs and Bailey's libraries;
- no previously published error bound;
- we proved that if $p \geq 3$ the relative error is less than

 $3 \cdot 2^{-2p};$

- speed and accuracy can be improved if an FMA instruction is available (merging lines 2 and 3).

1: $(c_h, c_{\ell 1}) \leftarrow Fast2Mult(x_h, y_h)$ 2: $t_{\ell 1} \leftarrow RN(x_h \cdot y_\ell)$ 3: $t_{\ell 2} \leftarrow RN(x_\ell \cdot y_h)$ 4: $c_{\ell 2} \leftarrow RN(t_{\ell 1} + t_{\ell 2})$ 5: $c_{\ell 3} \leftarrow RN(c_{\ell 1} + c_{\ell 2})$ 6: $(z_h, z_\ell) \leftarrow Fast2Sum(c_h, c_{\ell 3})$ 7: return (z_h, z_ℓ)

- suggested by Dekker and implemented in Briggs and Bailey's libraries;

- Dekker proved a relative error bound of $11 \cdot 2^{-2p}$;
- we improved it, proving that if $p \geq 4$ the relative error is less than

 $7 \cdot 2^{-2p};$

- speed and accuracy can be improved if an FMA instruction is available.

- 1: $t_h \leftarrow RN(x_h/y)$ 2: $(\pi_h, \pi_\ell) \leftarrow Fast2Mult(t_h, y)$ 3: $(\delta_h, \delta') \leftarrow 2Sum(x_h, -\pi_h)$ 4: $\delta'' \leftarrow RN(x_\ell - \pi_\ell)$ 5: $\delta_\ell \leftarrow RN(\delta' + \delta'')$ 6: $\delta \leftarrow RN(\delta_h + \delta_\ell)$ 7: $t_\ell \leftarrow RN(\delta/y)$ 8: $(z_h, z_\ell) \leftarrow Fast2Sum(t_h, t_\ell)$ 9: return (z_h, z_ℓ)
- algorithm suggested by Bailey;
- previously known error bound [Li.et.al02] of $4 \cdot 2^{-2p}$;

- 1: $t_h \leftarrow RN(x_h/y)$ 2: $(\pi_h, \pi_\ell) \leftarrow Fast2Mult(t_h, y)$ 3: $(\delta_h, \delta') \leftarrow 2Sum(x_h, -\pi_h)$ 4: $\delta'' \leftarrow RN(x_\ell - \pi_\ell)$ 5: $\delta_\ell \leftarrow RN(\delta' + \delta'')$ 6: $\delta \leftarrow RN(\delta_h + \delta_\ell)$ 7: $t_\ell \leftarrow RN(\delta/y)$ 8: $(z_h, z_\ell) \leftarrow Fast2Sum(t_h, t_\ell)$ 9: return (z_h, z_ℓ)
- algorithm suggested by Bailey;
- previously known error bound [Li.et.al02] of $4 \cdot 2^{-2p}$;
- Improvement: we showed that the addition in line 3 is always exact.

 \implies new algorithm

1: $t_h \leftarrow RN(x_h/y)$ 2: $(\pi_h, \pi_\ell) \leftarrow Fast2Mult(t_h, y)$ 3: $\delta_h \leftarrow RN(x_h - \pi_h)$ 4: $\delta_\ell \leftarrow RN(x_\ell - \pi_\ell)$ 5: $\delta \leftarrow RN(\delta_h + \delta_\ell)$ 6: $t_\ell \leftarrow RN(\delta/y)$ 7: $(z_h, z_\ell) \leftarrow Fast2Sum(t_h, t_\ell)$ 8: return (z_h, z_ℓ)

- less FP operations, but mathematically equivalent;

- slightly improved error bound:

$$\frac{7}{2} \cdot 2^{-2p},$$

as soon as $p \ge 4$.

Algorithm	Previously known bound	Our bound	Largest relative error found in experiments	♯ of FP ops
DWPlusFP	?	$2u^2 + 5u^3$	$2u^2 - 6u^3$	10
SloppyDWPlusDW	N/A	N/A	1	11
AccurateDWPlusDW	$2u^2$ (wrong)	$3u^2 + 13u^3$	$2.25u^{2}$	20
DWTimesFP1	$4u^2$	$2u^2$	$1.5u^{2}$	10
DWTimesFP2	?	$3u^{2}$	$2.517u^2$	7
DWTimesFP3 (fma)	N/A	$2u^{2}$	$1.984u^2$	6
DWTimesDW1	$11u^2$	$7u^2$	$4.9916u^2$	9
DWTimesDW2 (fma)	N/A	$5u^{2}$	$3.936u^2$	9
DWDivFP1*	$4u^2$	$3.5u^2$	$2.95u^2$	16
DWDivFP2*	N/A	$3.5u^{2}$	$2.95u^{2}$	10
DWDivDW1*	?	$15u^2 + 56u^3$	$8.465u^2$	24
DWDivDW2*	N/A	$15u^2 + 56u^3$	$8.465u^2$	18
DWDivDW3 (fma)	N/A	$9.8u^2$	$5.922u^2$	31

- many similar algorithms with small differences;
- no correctness proofs and error bounds;
- need to clean up the literature and implementation;

Tight and rigorous error bounds for basic building blocks of double-word arithmetic. Submitted to ACM TOMS journal. hal.archives-ouvertes.fr/hal-01351529

- many similar algorithms with small differences;
- no correctness proofs and error bounds;
- need to clean up the literature and implementation;
- + we looked at 13 algorithms, both old and new;
- $+\ensuremath{\,\mbox{we}}$ compared them and provided correctness proofs and error bounds;
- + code available online at: http://homepages.laas.fr/mmjoldes/campary/.

Tight and rigorous error bounds for basic building blocks of double-word arithmetic. Submitted to ACM TOMS journal. hal.archives-ouvertes.fr/hal-01351529