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Finding optimal formulae for computing bilinear maps is a problem of algebraic complexity
theory [3, 2, 16, 8], initiated by the discoveries of Strassen [16] and Karatsuba [9]. It consists to
determine almost optimal algorithms for important problems of complexity theory, among which
the well studied complexity of matrix multiplication [16, 5, 10] and the complexity of polynomial
multiplication [9, 17, 15, 6].

In the field of complexity of polynomial multiplication, the first improvement over the school-
book method came from Karatsuba [9] in 1962, who proposed a decomposition of the bilinear
map corresponding to the product of two polynomials of degree 2

𝑃 = 𝑝0 + 𝑝1𝑋 and 𝑄 = 𝑞0 + 𝑞1𝑋.

The product 𝑃 · 𝑄 requires, to be computed, 4 multiplications using the schoolbook algorithm:
𝑝0𝑞0, 𝑝1𝑞0, 𝑝0𝑞1, 𝑝1𝑞1. With the Karatsuba algorithm, the coefficients of the product 𝑃 · 𝑄 can
be retrieved from the computation of the 3 following multiplications: 𝑝0𝑞0, (𝑝0 + 𝑝1)(𝑞0 + 𝑞1),
𝑝1𝑞1. In particular, Karatsuba’s algorithm can be used to improve the binary complexity of the
multiplication of two 𝑛-bit integers: instead of 𝑂(𝑛2) with the naive schoolbook algorithm, we
obtain 𝑂(𝑛log2 3). Then, given a degree 𝑑 > 1, computing the minimal amount of multiplications
required for the product of polynomials of degree 𝑑 leads to even better complexities and produces
optimal formulae for a particular product.

The main obstacle to finding optimal formulae is the fact that the decomposition of bilinear
maps is known to be NP-hard [7]. Montgomery proposed in [11] an algorithm to compute such
a decomposition for the particular case of polynomials of small degree over a finite field. The
author takes advantage of the fact that the number of all optimal formulae is limited on a finite
field. He gets new formulae for the multiplication of polynomials of degree 5, 6 and 7 over F2.
In [12], Oseledets proposes a heuristic approach and uses the formalism of vector spaces to solve
the bilinear rank problem for the polynomial product over F2. Later, Barbulescu et al. proposed
in [1] a unified framework, developping the idea proposed by Oseledets using the vector spaces
formalism, permitting the authors to compute the bilinear rank of different applications, such
as the short product or the middle product over a finite field. Their algorithm allows one to
generate all the possible rank decomposition of any bilinear map over a finite field. This work is
the main inspiration of the current presentation.

Our work is an improvement to the algorithm introduced in [1], allowing one to increase
the family of bilinear maps over a finite field for which we are able to compute all the optimal
formulae. Our algorithm relies on the automorphism group stabilizing a bilinear map, seen
as a vector space, and on a topological invariant of such a vector space. It can be used for
proving lower bounds on the rank of a bilinear map and it has applications for improving upper
bounds on the Chudnovsky-Chudnovsky algorithms [4, 14, 13]. Especially, we compute all the
decompositions for the short product of polynomials 𝑃 and 𝑄 modulo 𝑋5 and the product of
3 × 2 by 2 × 3 matrices. The latter problem was out of reach with the method used in [1]: we
prove, in particular, that the set of possible decompositions for this matrix product is essentially
unique, up to the automorphism group.
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