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Understanding the theoretical complexity and designing efficient exact al-
gorithms for polynomial optimization problems is a central (and in its whole
generality open) question. In the last years it has attracted lot of attention
from the symbolic computation community.

Universal for polynomial optimization is the role of semidefinite program-
ming (SDP): this class of problems consists in minimizing a linear function over
the affine section of the cone of 𝑚 × 𝑚 positive semidefinite matrices defined by
the LMI (linear matrix inequality)

𝐴(𝑋) = 𝐴0 + 𝑋1𝐴1 + · · · + 𝑋𝑛𝐴𝑛 ⪰ 0.

where ⪰ 0 means positive semidefinite, 𝐴𝑖 are symmetric matrices and 𝑋 =
(𝑋1, . . . , 𝑋𝑛) is a vector of unknowns. Recent results [?, ?] have shown that
exploiting the geometry of the spectrahedral semialgebraic set S = {𝑥 ∈ R𝑛 :
𝐴(𝑥) ⪰ 0}, one can compute an exact representation of a solution of the SDP in
time which is essentially quadratic in the algebraic degree of SDP [?]. The size of
the output representation (in terms of the degree of a rational parametrization)
equals the algebraic degree of the given semidefinite program.

These algorithms are now implemented in a Maple library called Spectra [?].
The goal of the first (very short) part of the talk will be to discuss interesting
examples of LMI from the literature, where the exact representation computed
by Spectra gives important information about the computed solution.

The second part of the talk will focus on hyperbolic programming. A homo-
geneous polynomial 𝑓 ∈ R[𝑋]𝑑, 𝑋 = (𝑋0, . . . , 𝑋𝑛), is hyperbolic with respect
to 𝑒 ∈ R𝑛+1 when 𝑓(𝑒) > 0, and the polynomial 𝑓(𝑇𝑒 − 𝑥) ∈ R[𝑇 ] has only
real roots (in number of 𝑑, counted multiplicities) for all 𝑥 ∈ R𝑛+1. This is a
strong condition but holding on interesting classes of homogeneous polynomi-
als: for example, if 𝑓 admits a definite symmetric determinantal representation
𝑓 = det(𝑋0𝐴0 + · · · + 𝑋𝑛𝐴𝑛), 𝐴𝑖 real symmetric, with 𝐴(𝑒) ≻ 0 for some 𝑒,
then 𝑓 is hyperbolic.

To 𝑓 one can associate two convex cones. The first is the hyperbolicity cone:

Λ(𝑓, 𝑒) =
{︀

𝑥 ∈ R𝑛+1 : 𝑓(𝑇𝑒 − 𝑥) = 0 implies 𝑇 ≥ 0
}︀

.

Computing the infimum of a linear function over Λ(𝑓, 𝑒) is called a hyperbolicity
program HP. When Λ(𝑓, 𝑒) is a spectrahedral cone (e.g., when 𝑓 = det(𝑋0𝐴0 +
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· · ·+𝑋𝑛𝐴𝑛)), then the corresponding HP is a SDP. I will show that in the general
case (that is, in absence of a determinantal representation for 𝑓) one can design
exact algorithms to solve two different questions: (1) compute the maximum
multiplicity1 of 𝑥 for 𝑥 ∈ Λ(𝑓, 𝑒), and (2) represent exactly one solution of a HP.
The strategy is to reduce these problems to that of computing witness points
on real algebraic sets.

Finally, I will focus on a second convex set associated to 𝑓 , the cone of
interlacers. An interlacer for 𝑓 w.r.t. 𝑒 is a polynomial 𝑔 ∈ R[𝑋]𝑑−1 such that
𝑔(𝑒) > 0 and for all 𝑥 ∈ R𝑛+1, the roots of 𝑔(𝑇𝑒−𝑥) interlaces those of 𝑓(𝑇𝑒−𝑥)
(that is, 𝛼1 ≤ 𝛽1 ≤ 𝛼2 ≤ · · · ≤ 𝛽𝑑−1 ≤ 𝛼𝑑, with 𝛼𝑗 , 𝛽𝑗 roots respectively of
𝑓(𝑇𝑒 − 𝑥) and 𝑔(𝑇𝑒 − 𝑥)). The set of interlacers, denoted 𝐼(𝑓, 𝑒), turns out to
be a convex cone in R[𝑋]𝑑−1.

The choice of 𝑔 interlacing 𝑓 is crucial in the algorithm [?] to compute
definite determinantal representations of 𝑓 , while in [?], the cone of interlacers
is characterized as a section of the cone of nonnegative polynomials as follows:

𝐼(𝑓, 𝑒) = {𝑔 ∈ R[𝑋]𝑑−1 : 𝑔 𝐷𝑒𝑓 − 𝑓 𝐷𝑒𝑔 ≥ 0}

where 𝐷𝑒ℎ is the directional derivative of ℎ in direction 𝑒. Relaxing the relation
“𝑔 𝐷𝑒𝑓 − 𝑓 𝐷𝑒𝑔 ≥ 0” to “𝑔 𝐷𝑒𝑓 − 𝑓 𝐷𝑒𝑔 is a sum of squares”, then interlacers
with prescribed properties can be computed using exact arithmetic as above.
The topics of the second part of the talk are work in progress, jointly with D.
Plaumann.

1The multiplicity of 𝑇 = 0 as a root of 𝑓(𝑇 𝑒 − 𝑥) is called the multiplicity of 𝑥


