On the Formal Reduction of Linear Singular Differential Systems

Joelle Saadé

16-20 Janvier 2017, JNCF

We present a new algorithm of formal reduction of first order systems of differential equations with singularities of pole type at the origine:

$$[A]: Y' = A(x)Y, \tag{1}$$

where A is an n-dimensional formal meromorphic power series matrix over a field $k \subset \mathbb{C}$.

The formal reduction refers here to the process of splitting the given system of dimension n into subsystems of smaller dimension using formal gauge transformation Y = PZ where $P \in GL_n(\overline{k(x)})$.

We say that [A] is decomposable over k((x)) if there exists $P \in GL_n(k((x)))$ such that :

$$P[A] := P^{-1}AP - P^{-1}P' = \begin{pmatrix} B_1 & 0 \\ & \ddots & \\ 0 & & B_m \end{pmatrix}$$
(2)

where $m \geq 2$ and B_i is a square matrix of size $n_i < n$. We know from [3] that such a transformation P can be constructed using a suitable element in $\mathscr{E}_{k((x))}$, the local eigenring of [A] defined as:

$$\mathscr{E}_{k((x))}([A]) = \{T \in \mathscr{M}_n(k((x))/T' = AT - TA\}.$$

Algorithms for computing $\mathscr{E}_{k((x))}([A])$ exist (see [2]).

Our approach consists in first computing a maximal decomposition of [A] over k((x)), which means that each sub-system $[B_i]$ in (2) is indecomposable over k((x)); we then proceed by trying to decompose each sub-system $[B_i]$ over a suitable algebraic extension of k((x)), to be determined. It turns out that it is sufficient to look for solutions of the equation $T' = B_iT - TB_i$ of the form $T = x^{\alpha} \sum_{i \ge 0} x^i T_i$ with $\alpha = \frac{m}{s} \in \mathbb{Q}$. Once we find such a T, we consider the ramification $x = t^s$ in order to obtain a more refined decomposition. We note that this decomposition corresponds to the structure of the formal fundamental matrix solution of system [A] (see [1]). Hence we will discuss how we can recover the exponential parts of the system.

References

 H. L. Turrittin, Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point. Acta Math., vol. 93, 1995, pp.27-66.

- [2] M. A. Barkatou and E. Pflügel, An algorithm computing the regular singular formal solutions of a linear differential system. In Journal of Symbolic Computation 28(4-5), 1999.
- [3] M. A. Barkatou, Factoring Systems of Linear Functional Systems Using Eigenrings. Computer algebra 2006, 22–42, World Sci. Publ., Hackensack, NJ, 2007.