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MATERIAL ON A COURSE GIVEN AT JOURNÉES NATIONALES DE CALCUL FORMEL 2017

LUMINY, JANUARY 16–20, 2017

PETER BÜRGISSER

Abstract. The performance of numerical algorithms, both regarding stability and com-
plexity, can be understood in a unified way in terms of condition numbers. This requires
to identify the appropriate geometric settings and to characterize condition in geometric
ways. A probabilistic analysis of numerical algorithms can be reduced to a corresponding
analysis of condition numbers, which leads to fascinating problems of geometric proba-
bility and integral geometry.

This is the theme of my recent monograph Condition, written with Felipe Cucker, that
appeared in 2013 in Springer’s Grundlehren series. The monograph is divided into three
parts. Its first part deals with the solution of linear systems of equations, where many
of the concepts can be explained in an elementary way. The second part is devoted
to linear programming, i.e., the solution of systems of linear inequalities (there exist
natural extensions to convex programming). The third part is devoted to the solution of
systems of polynomial equations, focusing on Smale’s 17th problem, which asks to find
a solution of a given system of n complex homogeneous polynomial equations in n + 1
unknowns. This problem can be solved in average (and even smoothed) polynomial
time. Recently, Pierre Lairez succeeded in providing a complete solution of Smale’s
17th problem (“A deterministic algorithm to compute approximate roots of polynomial
systems in polynomial average time,” to appear in J. FoCM).

The enclosed course material in the form of slides follows the three part structure
of the monograph and attempts to illustrate the main unifying concepts and key ideas.
The framework seems quite generally applicable. For instance, a numerical algorithm
for computing eigenpairs of matrices, that is numerically stable and provably runs in
average polynomial time, was recently developed along these lines (Armentano, Beltrán,
Bürgisser, Cucker, and Shub, “A stable, polynomial-time algorithm for the eigenpair
problem,” accepted for J. EMS).
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For more details I refer to my new monograph (Springer 2013) with
Felipe Cucker:
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Overview

Motivation

I In computer science, the most common theoretical approach to
understanding the behaviour of algorithms is worst-case analysis.

I There are cases of algorithms that perform exceedingly well in
practice and still have a provably bad worst-case behaviour. A
famous example is Dantzig’s simplex algorithm.

I To rectify this discrepancy, the concept of average-case analysis was
introduced. This means bounding the expected performance of an
algorithm on random inputs. For the simplex algorithm:
average-case analyses by Borgwardt (1982) and Smale (1983).

I However, average analysis can rarely explain a good performance in
practice. Its results strongly depend on the distribution of the
inputs, which is unknown, and usually assumed to be Gaussian for
rendering the mathematical analysis feasible.
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Overview

Smoothed analysis
Smoothed analysis is a newer form of analysis of algorithms, that arguably
blends the best of both worst-case and average-case. It was proposed by
Spielman and Teng who performed a smoothed analysis of the running
time of the simplex algorithm (Gödel Prize 2008, Fulkerson Prize 2009).

Let T : Rp ! R+ [ {1} be a function (running time, condition number).
Instead of showing

“It is unlikely that T (a) will be large.”

one shows that
“For all a and all slight random perturbations a+�a, it is

unlikely that T (a+�a) will be large.”

Worst case analysis Average case analysis Smoothed analysis

sup
a2Rp

T (a) E
a2DT (a) sup

a2Rp

E
a2N(a,�2)T (a)

D distribution on Rp, N(a,�2) Gaussian distribution centered at a.
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time of the simplex algorithm (Gödel Prize 2008, Fulkerson Prize 2009).

Let T : Rp ! R+ [ {1} be a function (running time, condition number).
Instead of showing

“It is unlikely that T (a) will be large.”

one shows that
“For all a and all slight random perturbations a+�a, it is

unlikely that T (a+�a) will be large.”

Worst case analysis Average case analysis Smoothed analysis

sup
a2Rp

T (a) E
a2DT (a) sup

a2Rp

E
a2N(a,�2)T (a)

D distribution on Rp, N(a,�2) Gaussian distribution centered at a.



Condition: The Geometry of Numerical Algorithms

Overview

Condition based analysis
I Smoothed analysis can be applied to a wide variety of numerical

algorithms.

I For doing so, understanding the concept of condition numbers is an
important intermediate step.

I Condition numbers quantify the errors when the input has been
modified by a small perturbation.

I The best known condition number is (A) = kAkkA�1k for matrix
inversion and linear equation solving.

I The running time T (x , ") of iterative numerical algorithms,
measured as the number of arithmetic operations, can often be
bounded in the form

T (x , ") 
�
size(x) + µ(x) + log "�1

�
c

,

I input x 2 Rn of size(x) := n

I µ(x) measure of conditioning of x
I " required accuracy.
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Overview

Stochastic analysis of condition numbers

I Two-part scheme for dealing with complexity upper bounds in
numerical analysis (Smale 1997):

I Condition based analysis: T (x , ")  �
size(x) + µ(x) + log "�1

�
c

II Stochastic analysis of condition number µ(x) for random inputs x .

I This approach was elaborated for average-case complexity since the
eighties by many researchers, the pioneers being: Demmel, Edelman,

Renegar, Shub, Smale, Todd, Vavasis, Ye, and others.

I Part two of Smale’s scheme can be naturally refined by performing a
smoothed analysis of the condition number µ(x) involved.

I Smoothed analysis for condition numbers since 2004: Amelunxen,

Bürgisser, Cucker, Dunagan, Hauser, Lotz, Sankar, Spielman, Tao, Teng,

Vu, Wschebor and others.

I Recent new idea: weak average-case analysis (Amelunxen & Lotz,
2016). Take average after excluding a set of outliers of exponentially
small probability.
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Part I: Linear Equalities

Turing’s Condition Number

Turing’s condition number of a
matrix

A. Turing, 1948

J. von Neumann and H. Goldstine, 1947
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Part I: Linear Equalities

Turing’s Condition Number

General definition of condition number

I Suppose we have a numerical computation problem

f : Rp ! Rq, x 7! y = f (x).

We fix norms k k on Rp,Rq.

I Suppose the input x has a small relative error k�xk/kxk. We want
to bound the relative error k�yk/kyk of the output.

I This is done by the condition number (f , x) of x :

k�yk/kyk . (f , x) k�xk/kxk.

I Formal definition for di↵erentiable f :

(f , x) := kDf (x)k kxk
kf (x)k

where kDf (x)k denotes the operator norm of the Jacobian of f at x .
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Part I: Linear Equalities

Turing’s Condition Number

Turing’s condition number

I Consider matrix inversion

f : GL(m,R) ! Rm⇥m,A 7! A

�1.

We measure errors with the spectral norm.

I We show by a perturbation argument that the condition number
of A with respect to f equals the classical condition number of A:

(A) := (f ,A) = kAk kA�1k.

I Note that (�A) = (A) for � 2 R.
I (A) was introduced by A. Turing in 1948.
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Part I: Linear Equalities

Turing’s Condition Number

Connection to eigenvalues

I Let �1 � . . . � �
n

be the eigenvalues of AT

A.

I Then
kAk2 = sup

kxk=1

kAxk2 = sup
kxk=1

x

T

A

T

Ax .

Hence kAk2 = �1 is the largest eigenvalue of AT

A.

I Since ��1
n

� . . . � ��1
1 are the eigenvalues of A�1(A�1)T , we get

kA�1k2 = k(A�1)Tk2 = ��1
n

.

I We obtain

(A) = kAk kA�1k =

p
�1p
�
n

� 1.

I
p
�1 and

p
�
n

are called largest and smallest singular value of A.
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I We call the set of singular matrices ⌃ ✓ Rm⇥m the set of ill-posed
instances for matrix inversion. Clearly, A 2 ⌃, detA = 0.

I The Eckart-Young Theorem from 1936 states that

kA�1k =
1

dist(A,⌃)
,

where dist either refers to operator norm or to Frobenius norm
(Euclidean norm on Rn⇥n) defined as
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Finite precision

I Digital computers operate with floating-point numbers, and every
arithmetic operations produces a round-o↵ error.

I Let ✏mach denote the round-o↵ unit (e.g., 10�12).

I Suppose we compute the approximation e
x of x 2 R with relative

error �, i.e. ex = x(1 + �).

I The best we can hope for is �  1
2✏mach.

I One calls log10
�

�
✏mach

�
the loss of precision in decimal digits.
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Condition number bounds loss of precision

I Turing’s condition number is relevant for finite precision analysis of
linear algebra.

I For instance, QR factorization is one of the main engines in
numerical linear algebra.

I Let A 2 Rn⇥n be invertible and b 2 Rn. If the system Ax = b is
solved using the Householder QR factorization, the computed
solution e

x has a loss of precision bounded by

log10

⇣ kex � xk
✏machkxk

⌘
 2 log10 n + log10 (A) + c ,

where c denotes a universal constant c .
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Method of conjugate gradients
I Consider a full-rank rectangular matrix A 2 Rm⇥n with m > n, a

vector c 2 Rm, and the least squares problem

min
v2Rn

kAv � ck.

I The solution x

⇤ 2 Rn is given by the solution of the system Sx = b

with
S := A

T

A 2 Rn⇥n, b := A

T

c .

I By construction, S is symmetric and positive definite.
I The method of conjugate gradients is a powerful iterative method of

numerical linear algebra. Upon input S , b and a start vector x0 it
produces a sequence of iterates x1, x2, . . . , xn = x

⇤.
I In order to achieve a relative error ", it su�ces to execute

1

2

p
(S) ln

�1
"

�

iterations (Hestenes and Stiefel, 1952).
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Probabilistic Analysis of Turing’s
Condition Number

Average-case Analysis

H. Goldstine and J. von Neumann

Numerical inverting matrices of high order, II, 1951
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Average Probabilistic Analysis of (A)

Wishart distribution

I Suppose A 2 Rn⇥n is a random matrix with independent standard
Gaussian entries.

I What can we say about the random variable (A)?

I The distribution of AT

A is known as Wishart distribution which is of
relevance in multivariate statistics.

I The joint probability density of the eigenvalues �1 � . . . � �
n

of
A

T

A is known (Fisher, Hsu, Roy, 1939) and equals

⇢(�) = c

n

e

� 1
2

P
i

�
i

Y

i

�
� 1

2

i

Y

i<j

(�
i

� �
j

),

with some normalizing constant c
n

.

I It plays an important role in physics (cf. Wigner, 1967).
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(Limit) distribution of (A)

I From the joint distribution of the eigenvalues, it is possible to derive
the distribution of (A) =

p
�1/�n

.

Edelman (1988)

lim
n!1

Prob{(A) � nx} = 1� e

�2/x�2/x2

=
2

x

+O(
1

x

2
).

I This implies for the expectation

E
A

(log (A)) = log n + c + o(1).

I Application: the QR factorization has an average loss of precision
3 log10 n +O(1). Satisfactory result!

I There is an intuitive geometric way of deriving such results, that also
has the virtue of generalizing to a wide variety of situations.
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Link to geometry: reduction to sphere

I Define Frobenius condition number 
F

(A) := kAk
F

kA�1k � (A).

I The standard Gaussian distribution on Rn⇥n induces the uniform
distribution on the sphere S := S

n

2�1 := {A 2 Rn⇥n | kAk
F

= 1} via

Rn⇥n \ {0} ! S, A 7! B = 1
kAk

F

A

I By the characterization by inverse distance to ill-posedness


F

(A) = 
F

(B) = kBk
F

kB�1k =
kBk

F

dist(B ,⌃)
=

1

dist(B ,⌃)
,

where ⌃ := {A0 2 Rn⇥n | detA0 = 0} and dist is measured by
Frobenius norm.

I Hence

Prob

A

{
F

(A) � "�1} = Prob

B

{
F

(B) � "�1} = Prob

B

{dist(B ,⌃)  "}.
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arcsin " in the sphere S.
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Volume of determinant hypersurface ⌃S (1)
I ⌃ is the zero set of the determinant, a homogeneous polynomial of

degree d = n.

I Let P be a plane (two-dimensional subspace) in Rn⇥n. How about
the intersection P \ ⌃?

I Either P \ ⌃ = P (degenerate case) or P \ ⌃ is a union of k lines
through the origin, for k  d .

I Hence, almost surely, P \ ⌃S is either empty or consists of 2d
points, two of which are diametral.

I Let S0 be the intersection of S with a hyperplane (hyperequator).
Poincaré’s formula of integral geometry states

vol(⌃S)
vol(S0) = E

P

⇣#(P \ ⌃S)
2

⌘
,

where the expectation is over random planes P .
I Therefore,

vol(⌃S)
vol(S0) = d · Prob

P

{P \ ⌃S 6= ;}  d .
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Poincaré’s formula of integral geometry states

vol(⌃S)
vol(S0) = E

P

⇣#(P \ ⌃S)
2

⌘
,

where the expectation is over random planes P .
I Therefore,

vol(⌃S)
vol(S0) = d · Prob

P

{P \ ⌃S 6= ;}  d .



Condition: The Geometry of Numerical Algorithms

Part I: Linear Equalities

Average Probabilistic Analysis of (A)

Volume of determinant hypersurface ⌃S (1)
I ⌃ is the zero set of the determinant, a homogeneous polynomial of

degree d = n.
I Let P be a plane (two-dimensional subspace) in Rn⇥n. How about

the intersection P \ ⌃?
I Either P \ ⌃ = P (degenerate case) or P \ ⌃ is a union of k lines

through the origin, for k  d .

I Hence, almost surely, P \ ⌃S is either empty or consists of 2d
points, two of which are diametral.

I Let S0 be the intersection of S with a hyperplane (hyperequator).
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Volume of determinant hypersurface ⌃S (2)

I From

vol(⌃S)
vol(S) =

vol(⌃S)
vol(S0) · vol(S

0)

vol(S)  d

r
dim S
2⇡

 n

2

p
2⇡

.

we obtain the asymptotic tail bound

Prob

B

{
F

(B) � "�1} =
vol(⌃S) · 2"

vol(S) + o(") 
r

2

⇡
n

2 "+ o(").

I This bound is larger by a factor ⇡ n than Edelman’s bound

Prob

B

{(B) � "�1} = 2n "+ o(").

I By a more careful estimation of tube volumes one can derive
nonasymptotic bounds.

I These ideas have been developed in detail by Demmel (1988).
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Application to method of conjugate gradients

I The method of conjugate gradients, on input S = A

T

A, takes

1

2

p
(S) ln

�1
"

�
=

1

2
(A) ln

�1
"

�
.

iterations to achieve relative error ".

I However,

Prob{(A) � t} = O
�
n

t

�

implies
E((A)) = 1.

This is inconsistent with the success of CGM in practice!

Explanation?
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Average Probabilistic Analysis of (A)

Condition of rectangular matrices

I CGM is usually applied to S = R

T

R , where R 2 Rm⇥n is rectangular
with m � n. (E.g., overdetermined least square problem with m

linear constraints in n variables.)

I Let q 2 (0, 1). It is known (Geman (1980), Silverstein (1985)) that
for standard Gaussian R of size m

n

⇥ n and m

n

/n ! q for n ! 1

(R)
a.s.�! 1 +

p
q

1�p
q

.

I Hence: The expected number of iterations of CGM is independent
of n and only depends on the ratio q.

I E.g., for 4n ⇥ n matrices R and large n, (A) ' 3.
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Condition Number

Smoothed Analysis



Condition: The Geometry of Numerical Algorithms

Part I: Linear Equalities

Smoothed Probabilistic Analysis of (A)

Smoothed analysis of (A)
I Take now any A 2 Rn⇥n, 0 < �  1 and consider the isotropic

Gaussian density

⇢(A) =
1

(�
p
2⇡)n2

exp
⇣
� kA� Ak2

F

2�2

⌘

with mean A and covariance matrix �2
I . Notation: A ⇠ N(A,�2

I ).

I This models a slight perturbation of A due to noise, round-o↵, etc.
I The goal of a smoothed analysis of (A) is to derive tail bounds on

it that are independent of the center A.
I Due to scale invariance of (A) we assume kAk

F

= 1.
I Improving results by Sankar, Spielman, and Teng (2006), Wschebor

showed:

Wschebor (2004)

sup
kAk

F

=1

Prob

A⇠N(A,�2
I )
{(A) � t} = O

⇣
n

�t

⌘
.
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Smoothed analysis of (A): rectangular case
I Wschebor’s tail bound implies

sup
kAk=1

E
A⇠N(A,�2

I )

�
log (A)

�
= log

n

�
+O(1).

I This gives a more compelling probabilistic interpretation of the
success of several procedures in numerical linear algebra.

I For the rectangular case R 2 Rm⇥n we have:

B, Cucker (2010)

sup
kRk

F

=1

E
R⇠N(R,�2

I )

�
(R)

�
 20.1

1� q

for q 2 (0, 1), m/n  q, and su�ciently large n.

I As in the average case, the bound is independent of n. Interestingly,
it is also independent of � (for large n)!

I Has obvious consequence for the probabilistic analysis of CGM.
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Geometric ideas for smoothed analysis (1)

I The mentioned smoothed analysis bounds were derived by direct,
problem adapted methods from probability.

I As for the average-case analysis, it is possible to give smoothed
analysis bounds in a geometrically intuitive way that apply to a wide
variety of situations.

I Think of  as a function defined on the sphere S = S

n

2�1.

I Let B(A,�) denote the spherical cap in S of angular radius arcsin�
with center A 2 S, where 0  �  1.

I We model now perturbations by A chosen from a uniform
distribution on B(A,�): uniform smoothed analysis.

I � = 0 yields worst-case analysis
I � = 1 yields average-case analysis
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Geometric ideas for smoothed analysis (2)

Let T (⌃S, ") denote the neighborhood (or tube) of ⌃
S

of radius arcsin ".

Prob

A2B(A,�)
{

F

(A) � "�1} = Prob

A2B(A,�)
{dist(A,⌃)  "}

= Prob

A2B(A,�)
{A 2 T (⌃S, ")} =

vol(T (⌃S, ") \ B(A,�))

vol(B(A,�))

Uniform smoothed analysis means to provide relative bounds on the
volume of tubes intersected with small spherical caps!
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Heuristic estimation (1)
I Write B := B(A,�). Then

vol(T (⌃S, ") \ B)

vol(B)
⇡ vol(⌃S \ B) · 2"

vol(B)
.

I Poincaré’s formula yields as before, with d = n,

vol(⌃S \ B)

vol(S0) = E
P

⇣#(P \ ⌃S \ B)

2

⌘
 d · Prob

P

{P \ B 6= ;}.

where the expectation is over random planes P .

I Therefore, writing p := dim S,

vol(⌃S \ B)

vol(B)
=

vol(⌃S \ B)

vol(S0) · vol(S
0)

vol(S) · vol(S)
volB

. d · Prob
P

{P \ B 6= ;} ·pp · 1

�p
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I Poincaré’s formula yields as before, with d = n,

vol(⌃S \ B)

vol(S0) = E
P

⇣#(P \ ⌃S \ B)

2

⌘
 d · Prob

P

{P \ B 6= ;}.

where the expectation is over random planes P .

I Therefore, writing p := dim S,

vol(⌃S \ B)

vol(B)
=

vol(⌃S \ B)

vol(S0) · vol(S
0)

vol(S) · vol(S)
volB

. d · Prob
P

{P \ B 6= ;} ·pp · 1

�p

.



Condition: The Geometry of Numerical Algorithms

Part I: Linear Equalities

Smoothed Probabilistic Analysis of (A)

Heuristic estimation (1)
I Write B := B(A,�). Then

vol(T (⌃S, ") \ B)

vol(B)
⇡ vol(⌃S \ B) · 2"

vol(B)
.
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Heuristic estimation (2)

I
P \ S := S

1 is a circle. We may as well fix this circle and take a
random cap B of radius arcsin�.

I The cap B meets S1 i↵ the center of B is �-close to S

1. Therefore,

Prob

B

{S1 \ B 6= ;} =
vol(T (S1,�))

vol(S) .

I This is roughly 2⇡ times the volume of a (p � 1)-dimensional ball of
radius � in the cross section to S

1, divided by vol(S). It is roughly
�p�1.

I Hence

vol(⌃S \ B)

vol(B)
. d · Prob

P

{P \ B 6= ;} ·pp · 1

�p

⇡ d · �p�1 ·pp · 1

�p

=
d

p
p

�
.
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Heuristic estimation (3)

I Altogether

Prob

A2B(A,�)
{

F

(A) � "�1} =
vol(T (⌃S, ") \ B)

vol(B)

⇡ vol(⌃S \ B) · 2"
vol(B)

. d

p
p "

�
= O

⇣
n

2"

�

⌘
.

I Using some di↵erential and integral geometry, this can be turned
into a proof, yielding a bound of essentially this order of magnitude.

I The bound is worse by a factor n compared to Wschebor’s result.
But it has the advantage to be true in a much more general
situation.
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A general result for smoothed analysis
I Assume that ⌃ ⇢ Rp+1 is given as the zero set of a homogeneous

polynomial of degree d .

I For a 2 Rp+1 define the conic condition number of a abstractly by

C (a) =
kak

dist(a,⌃)
.

B, Cucker, Lotz (2008)

For all � 2 (0, 1] and all t � (2d + 1) p� ,

sup
a2S

p

Prob

a2B(a,�)
{C (a) � t}  26 dp

1

�t
.

sup
a2S

p

E
a2B(a,�)(lnC (a))  2 ln

⇣
dp

�

⌘
+ 4.7.

I
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Condition: The Geometry of Numerical Algorithms

Part I: Linear Equalities

Smoothed Probabilistic Analysis of (A)

Application: Eigenvalue computation

I A similar result can be shown over the complex numbers, where the
set ⌃ of ill-posed inputs is a complex algebraic hypersurface.
(Considerably simpler proof.)

I Problem: Compute the (complex) eigenvalues of a matrix A 2 Cn⇥n

I Set of ill-posed inputs: Set ⌃ of matrices A having multiple
eigenvalues. This is the zero set of the discriminant polynomial of
the characteristic polynomial, which has degree d = n

2 � n.

I Condition number (Wilkinson, 1965): Satisfies 
eigen

(A) 
p
2 kAk

F

dist(A,⌃)

I Corollary: For all A 2 Rn⇥n of Frobenius norm one and 0 < �  1

E
A2B(A,�)(lneigen(A))  2 ln

n

4

�
+ 5.
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Condition: The Geometry of Numerical Algorithms

Part I: Linear Equalities

Random Triangular Matrices

Random Triangular Matrices:

The classical condition number is not always
appropriate!



Condition: The Geometry of Numerical Algorithms

Part I: Linear Equalities

Random Triangular Matrices

Random triangular matrices are ill-conditioned

I Practitioners observed since long that triangular systems of
equations are generally solved to high accuracy in spite of being, in
general, ill-conditioned.

I Let L = (`
ij

) 2 Rn⇥n be a random lower-triangular matrix with
independent standard Gaussian random entries `

ij

for i � j .

Viswanathan and Trefethen (1998)

E(ln(L)) � ⌦(n).

I We give a simple proof of a related result later on.

I Would the loss of precision in the solution of triangular systems
conform to this bound, we would not be able to accurately find
these solutions!

Explanation?
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E(ln(L)) � ⌦(n).

I We give a simple proof of a related result later on.

I Would the loss of precision in the solution of triangular systems
conform to this bound, we would not be able to accurately find
these solutions!

Explanation?
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Componentwise relative errors

The classical condition number is the condition number of matrix
inversion A 7! A

�1:

(A) = lim
�!0

sup
RelError(A)�

RelError(A�1)

RelError(A)
.

Here, we use the normwise relative error

RelError(A) :=
k eA� Ak
kAk ,

with the spectral norm k k.
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Random Triangular Matrices

Componentwise condition number

I Instead of RelError we may use the possibly much larger
componentwise relative error

CwRelError(A) := max
i,j

k ea
ij

� a

ij

k
ka

ij

k .

I We define the componentwise condition number of matrix inversion
correspondingly as

Cw†(A) := lim
�!0

sup
CwRelError(A)�

CwRelError(A�1)

CwRelError(A)
.
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Random Triangular Matrices

Backward substitution is componentwise stable

I Backward substitution is the obvious algorithm for solving a
triangular linear system Lx = b.

I The loss of precision of backward substitution can be shown to be
bounded by O(log Cw†(L) + log n),

I Recent result:

Cheung & Cucker (2009)

E(log Cw†(L)) = O(log n)

for a random lower-triangular matrix L 2 Rn⇥n with independent
standard Gaussian random entries `

ij

I This explains why linear triangular systems can be solved by
backward substitution with high accuracy.
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Why random triang. matrices are ill-conditioned (1)

Let L = (`
ij

) denote a random unit lower-triangular matrix with `
ii

= 1
and with independent standard Gaussian random entries `

ij

for i > j .
Then we have

E(kL�1k2
F

) = 2n � 1.

In particular, E(kLk2
F

kL�1k2
F

) � n(2n � 1), hence E((L)2) grows
exponentially in n.

Proof.

I The first column (s1, . . . , sn) of L�1 is characterized by s1 = 1 and
the recursive relation

s

i

= �
i�1X

j=1

`
ij

s

j

for i = 2, . . . , n.

I Hence s

i

is a function of the first i rows of L and thus independent
of the entries of L in the rows with index larger than i .
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Why random triang. matrices are ill-conditioned (2)
I By squaring we obtain for i � 2

s

2
i

=
X

j 6=k

j,k<i

`
ij

`
ik

s

j

s

k

+
X

j<i

`2
ij

s

2
j

.

I By the preceding observation, s
j

s

k

is independent of `
ij

`
ik

for
j , k < i . If additionally j 6= k , we get

E(`
ij

`
ik

s

j

s

k

) = E(`
ij

`
ik

)E(s
j

s

k

) = E(`
ij

)E(`
ik

)E(s
j

s

k

) = 0

as `
ij

and `
ik

are independent and centered.
I So the expectations of the mixed terms vanish and we obtain, using

E(`2
ij

) = 1, that

E(s2
i

) =
i�1X

j=1

E(s2
j

) for i � 2.

I Solving this recursion with E(s21 ) = 1 yields

E(s2
i

) = 2i�2 for i � 2.
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Why random triang. matrices are ill-conditioned (3)

I Therefore, the first column v1 of L�1 satisfies

E(kv1k2) = E
⇣ nX

i=1

s

2
i

⌘
= 2n�1.

I By an analogous argument one shows that

E(kv
k

k2) = 2n�k

for the kth column v

k

of L�1. Altogether, we obtain

E(kL�1k2
F

) = E
⇣ nX

k=1

kv
k

k2
⌘
=

nX

k=1

E(kv
k

k2) = 2n � 1.

2
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Interior-point methods for linear
programming
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Part II: Linear Inequalities

Interior-point methods

Linear programming (1)

I Standard primal form of linear programs: given A 2 Rm⇥n, b 2 Rm,
c 2 Rn; look for optimal x 2 Rn

min cTx subject to Ax = b , x � 0 (P)

I Standard dual form of linear programs: Given A, b, c , look for
optimal y 2 Rm.

max bTy subject to A

T

y  c (D)

I It is known that max bTy = min cTx if (P) and (D) are both
feasible (duality).

I We always assume n � m.
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Interior-point methods

Linear programming (2)

I Suppose that (P) and (D) are both feasible, The vector
s := c � A

T

y of slack variables satisfies

A

T

y + s = c , s � 0,

hence, using Ax = b,

c

T

x � b

T

y = (sT + y

T

A)x � b

T

y = s

T

x + y

T(Ax � b) = s

T

x � 0.

I Optimality is equivalent to s

T

x = 0, which is equivalent to the
complementary slackness condition

x

i

s

i

= 0, i = 1, 2, . . . , n. (1)
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Interior-point methods

Idea of primal-dual interior point methods (1)

I Dantzig’s simplex method follows a path of vertices on the boundary
of the polyhedron of solutions.

I By contrast, interior point methods follow a path in the interior of
the polyhedron, hence the name. This path is a nonlinear curve that
is approximately followed by a variant of Newton’s method.

I More specifically, primal-dual interior point methods follow the
central path in the strictly feasible set F� ✓ Rn+m+n defined by

Ax = b , AT

y + s = c , x > 0 , s > 0.

with the additional quadratic constraints for µ > 0

x1s1 = µ , . . . , x
n

s

n

= µ.

I It can be shown that, if rankA = m, there is exactly one solution ⇣µ
of this system, for all µ > 0.
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Idea of primal-dual interior point methods (2)
I Suppose we know ⇣µ0 for some µ0 > 0.

I We choose a centering parameter � 2 (0, 1) and consider
µ
k

= �k µ0 converging to 0.
I We successively compute approximations z

k

of ⇣
k

:= ⇣µ
k

for
k = 0, 1, 2, . . . until a certain accuracy is reached.

0

µ C
F� ⇣0

⇣
k

⇣
k+1

z

k

z

k+1

I The duality measure of z = (x , y , s) 2 F� is defined as

µ(z) :=
1

n

nX

i=1

x

i

s

i

.
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Derivation of the algorithm (1)
I We get the approximations z

k

by Newton’s method, one of the most
fundamental methods in computational mathematics.

I Consider the map F : Rn+m+n ! Rn+m+n,

z = (x , y , s) 7! F (z) = (AT

y + s � c ,Ax � b, x1s1, . . . , xnsn)

satisfying {⇣µ} = F

�1(0, 0, µe
n

), where e

n

:= (1, . . . , 1) 2 Rn. The
Jacobian matrix of F at z equals

DF (z) =

2

4
0 A

T

I

A 0 0
S 0 X

3

5 ,

where here and in the following we set

S = diag(s1, . . . , sn) , X = diag(x1, . . . , xn).

I Fact: DF (z) is invertible if rankA = m and s

i

x

i

6= 0 for all i .
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Interior-point methods

Derivation of the algorithm (2)
I Set ⇣

k

= ⇣µ
k

. Then F (⇣
k

) = (0, 0, µ
k

e

n

) for all k 2 N. A first order
approximation gives

F (⇣
k+1) ⇡ F (⇣

k

) + DF (⇣
k

)(⇣
k+1 � ⇣

k

). (2)

I Suppose now that z
k

= (x , y , s) 2 F� is an approximation of ⇣
k

.
Then F (z

k

) = (0, 0, x1s1, . . . , xnsn) = (0, 0,X S e

n

). We obtain
from (2), replacing the unknowns ⇣

k

by z

k

,

(0, 0, µ
k+1 en) = F (⇣

k+1) ⇡ F (z
k

) + DF (z
k

)(⇣
k+1 � z

k

).

I This leads to the following choice of the approximation of ⇣
k+1.

z

k+1 := z

k

+ DF (z
k

)�1(0, 0, µ
k+1 en � X S e

n

)

I One easilys checks for z
k+1 = z

k

+ (�x ,�y ,�s)

A

T(y +�y) + (s +�s) = c , A(x +�x) = b.
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Primal-dual IPM
We choose � := 1� 1

4
p
n

.

Algorithm: Primal-Dual IPM

Input: A 2 Rm⇥n, b 2 Rm, c 2 Rn s.t. rankA = m  n.
Choose starting point z0 = (x0, y0, s0) 2 F� with duality measure µ0.
for k = 0, 1, 2, . . .

Solve
2

4
0 A

T

I

A 0 0
S

k 0 X

k

3

5 ·

2

4
�x

k

�y

k

�s

k

3

5 =

2

4
0
0

�k+1µ0 en � X

k

S

k

e

n

3

5 ,

where X

k = diag(xk1 , . . . , x
k

n

), Sk = diag(sk1 , . . . , s
k

n

).
Set

(xk+1, yk+1, sk+1) = (xk , yk , sk) + (�x

k ,�y

k ,�s

k).

until some stopping criterion is matched
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Analysis of IPM

For the following, see Wright (1997).

Theorem.
Primal-Dual IPM produces, on a strictly feasible starting point z0 on
the central path (or close to it), a sequence of iterates z

k

2 F� such that
µ(z

k

) = �kµ(z0). After

k � 4
p
n ln

µ0

"
.

iterations we have µ(zk)  ".
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Condition numbers of linear programming

Linear Programming Feasibility Problem (1)

I We focus on the homogeneous feasibility problem.

I For A 2 Rm⇥n, n > m, consider the system of linear inequalities

9x 2 Rn

Ax = 0, x > 0. (P)

and its dual problem

9y 2 Rm

A

T

y < 0 (D)

I Let F�
P

and F�
D

denote the set of instances where P and D are
solvable, respectively.

I We have a disjoint union

Rn⇥m = F�
P

[ F�
D

[ ⌃,

where the set of ill-posed instances ⌃ is the common boundary of
F�

P

and F�
D

.
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Linear Programming Feasibility Problem (2)

Rn⇥m = F�
P

[ F�
D

[ ⌃,

The Homogeneous Linear Programming Feasibility problem (HLPF) is to
decide for given A, whether A 2 F�

P

or A 2 F�
D

.
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Renegar’s condition number
I For the HLPF problem, J. Renegar defined the condition number of

the instance A 2 Rm⇥n as

C
R

(A) :=
kAk

dist(A,⌃)
.

I Note that C
R

(A) = 1 i↵ A 2 ⌃.
I HLPF can be solved by solving a related linear programming

optimization problem up to a certain accuracy. More specifically,

µ(z
k

) = O
⇣ 1

n

2C
R

(A)

⌘

su�ces for the decision A 2 F�
P

or A 2 F�
D

(Renegar, 1995).
I By the previous analysis

Primal-Dual IPM can be solved with a number of iterations bounded by

O
✓p

n log(n C
R

(A))

◆
.
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Condition-based Complexity Analysis

I Khachian (1979): for an integer matrix A, HLPF can be solved in
polynomial time (in the bit size of A).

I Notorious open problem: can HLPF be solved for real matrix A with
a number of arithmetic operations polynomial in m, n?

I Renegar’s analysis bounds the number of arithmetic operations by a
polynomial in both the

I dimension n of the problem
I logarithm of its condition number.

I log C
R

(A) is polynomially bounded in bitsize of A for integer
matrices A 62 ⌃.

I Consequence: HLPF can be solved in polynomial time for an integer
matrix A, counting bit operations.
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Characterization of ill-posedness

I Let A 2 Rm⇥n be of full rank, n > m. Denote by a1, . . . , an the
columns of A and � its convex hull.

I Primal feasibility
9x 2 Rn

Ax = 0, x > 0 (P)

means that x1a1 + · · ·+ x

n

a

n

= 0 for some x

i

> 0, that is, 0 2 int�.

I Dual feasibility
9y 2 Rm

A

T

y < 0 (D)

means that ha
i

, yi < 0 for some y , that is, � lies in some open
halfspace.

I Recall ⌃ = F�
P

\ F�
D

.

I Hence A is ill-posed, A 2 ⌃, i↵ � is contained in a closed halfspace
and 0 2 �.
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GCC condition number (1)
I We are going to define a variant of Renegar’s condition number,

that is better suited for probabilistic analysis.
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I The GCC-condition number of A is defined as (Go�n (1980),
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C (A) := 1/�(A).

I Note that we measure the relative size of the perturbation for each
column a

i

with respect to the norm of a
i

.
I Also, �(A) is scale invariant. We may therefore assume, without

loss of generality, that ka
i

k = 1 for all i .
I Hence we can interpret A with columns a1, . . . , an as an element in

the product Sn = S⇥ · · ·⇥ S of spheres S := Sm�1.
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I Let d denote angular distance on S. Define a metric on Sn by

dS(A,B) := max
1in

d(a
i

, b
i

) .

I It is straightforward to show

C (A) =
1

sin dS(A,⌃)
.

I We note that HLPF can be solved by a primal-dual interior-point
method with a number of iterations

O
⇣p

n log(nC (A))
⌘
.
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Minimal spherical caps

I Let ⇢(A) be the angular radius of a spherical cap of minimal radius
containing a1, . . . , an 2 S.

I Easy to see: ⇢(A) < ⇡
2 i↵ A 2 Fo

D

. Hence, ⇢(A) = ⇡
2 i↵ A 2 ⌃.

Cheung & Cucker (2001)

dS(A,⌃) =

(
⇡
2 � ⇢(A) if A 2 F�

D

⇢(A)� ⇡
2 if A 2 Sn \ F�

D

.

I In particular, dS(A,⌃)  ⇡
2 and

C (A)�1 = sin dS(A,⌃) = | cos ⇢(A)| .
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Average Analysis of GCC condition number

GCC condition number and coverage processes (1)

I Suppose A 2 Rn⇥m is standard Gaussian.

I After normalization, this means that each column a

i

is
independently chosen from the uniform distribution on the sphere S.

I The probability distribution of C (A) is related to a classical question
on covering a sphere by random spherical caps.

I Let p(n,m,↵) denote the probability that randomly chosen spherical
caps with centers a1, . . . , an and angular radius ↵ do not cover the
sphere S = S

m�1.

I We claim that

p(n,m,↵) = Prob

�
⇢(A)  ⇡ � ↵

 
.
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GCC condition number and coverage processes (2)

I Claim: p(n,m,↵) = Prob

�
⇢(A)  ⇡ � ↵

 
.

I
Proof. The caps of radius ↵ with center a1, . . . , an do not cover S
i↵ there exists y 2 S having distance greater than ↵ from all a

i

.

I This means that the cap of radius ⇡ � ↵ centered at �y contains all
the a

i

. Hence

p(n,m,↵) = Prob

�
⇢(A)  ⇡ � ↵

 
.
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Average analysis of C

I The problem to determine the coverage probabilities p(n,m,↵) is
classical and completely solved only for m � 1 = dim S  2 (Gilbert
(1965), Miles (1969)).

I For m > 3 little was known except, Wendel (1962),

p(n,m,⇡/2) = 1
2n�1

P
m�1
k=0

�
n�1
k

�

and asymptotic formulas for p(n,m,↵) for ↵ ! 0, Janson (1986).

I B, Cucker, Lotz (2010) discovered a closed formula for p(n,m,↵) in
the case ↵ � ⇡/2
and an upper bound for p(n,m,↵) in the case ↵  ⇡/2.

I This implies
E(lnC (A))  2 lnm + 3.31.

I Consequence: the expected number of iterations of interior point
methods for HLPF is O(

p
n log n).
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Closed formula for p(n,m,↵)

I For ↵ � ⇡/2, setting " := | cos(↵)|,

p(n,m+1,↵) =
mX

k=1

✓
n

k + 1

◆
C (m, k)

Z 1

"
t

m�k(1�t

2)
1
2 km�1�

m

(t)n�k�1
dt.

Here, �
m

(t) denotes the relative volume of a spherical cap of radius
arccos t 2 [0,⇡/2] in S

m and the constants C (m, k) describe higher
moments of the volume of certain random simplices.

I Let O
m

denote the m-dimensional volume of the sphere S

m.

vol(⌃) · "
vol(S)n + o("2) =

= Prob

�
A 2 F�

D

, C (A)�1  "
 
= p(n,m,⇡/2)� p(n,m,↵)

=

✓
n

m + 1

◆
(m + 1)

O
m�1

O
m

1

2n�2
"+ o("2).
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Smoothed Analysis of GCC condition number

Gaussian smoothed analysis

I Model for local perturbations: A 2 Rm⇥n, Gaussians A 2 Rm⇥n.

Dunagan, Spielman, Teng (2011)

sup
kAk=1

E
A⇠N(A,�2

I )

�
ln C

R

(A)
�
= O

⇣
ln

n

�

⌘
.

I
I This implies the bound O(

p
n log n

� ) on the smoothed expected
number of iterations of the IPM considered for HLPF. Excellent
result!
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Gaussian smoothed analysis
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Uniform smoothed analysis of C

I Model for smoothed analysis on product of spheres: a1, . . . , an 2 S,
independently choose a

i

uniformly at random in spherical cap
B(a

i

,�) of S centered at a
i

with angular radius arcsin�.
That is, choose A 2 B(A,�) :=

Q
i

B(a
i

,�) uniformly.

I Amelunxen and B (2012): For 0 < "  �/(2m(m + 1))

sup
A2Sn

Prob

A2B(A,�)
{A 2 F�

D

, C (A) � "�1}  6.5 nm2 "

�
.

I For the infeasible case (A 62 F�
P

) a slightly worse tail estimate is
obtained. Moreover,

sup
A2Sn

E
A2B(A,�)

�
lnC (A)

�
= O

�
ln

n

�

�
.

I We even obtain robustness results.
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Smoothed Analysis of GCC condition number

Sketch of proof (1)
I By a convex body K in the sphere S we understand the intersection

with S of a closed regular convex cone C in Rm.

I We call T
o

(@K , ") := T (@K , ") \ K the outer "-neighborhood of the
boundary @K . Then

vol(T
o

(@K , ") \ B(a,�))

volB(a,�)
 6.5m

"

�
if "  �

2m , (*)

and the same upper bound holds for the relative volume of the inner
"-neighborhood of @K .

I The proof idea is similar to the previously mentioned (volume of
tubes, integral geometry, counting argument).

I In particular, Poincaré’s formula implies

vol(@K )

vol(S0)  1.

Indeed, by convexity, the intersection of @K with a hyperequator S0
of S in general position consists of at most two points.
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Sketch of proof (2)
I

Crucial Lemma. Let A = (a1, . . . , an) 2 F�
D

and C (A) � m"�1.
Then there exists i 2 {1, . . . , n} such that a

i

2 T

o

(@K
i

, "), where
�K

i

is the spherical convex hull of a1, . . . , ai�1, ai+1, . . . , an.

I The Lemma yields with t = m/"

Prob{A 2 F�
D

, C (A) � t} 
nX

i=1

Prob{A 2 F�
D

, a

i

2 T

o

(@K
i

, ")}.

Note that B(A,�) = B(A
0
,�)⇥B(a

n

,�) where A0 := (a1, . . . , an�1).

I We bound the probability on the right-hand side for i = n by an
integral of probabilities conditioned on A

0 := (a1, . . . , an�1):

Prob{A0 2 F�
D

and a

n

2 T

o

(@K
n

, ")}

=
1

volB(A0,�)

Z

A

02F�
D

\B(A0,�)
Prob{a

n

2 T

o

(@K
n

, ") | A0} dA0.
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Smoothed Analysis of GCC condition number

Sketch of proof (3)

I Fix now A

0 2 F
n�1,m and consider the convex set K

n

in S. The
volume bound (*) yields

Prob{a
n

2 T

o

(@K
n

, ") | A0} =
vol(T

o

(@K
n

, ") \ B(a
n

,�))

volB(a
n

,�)
 6.5m

"

�
.

We conclude that

Prob{A 2 F�
D

, a

n

2 T

o

(@K
n

,�)}  6.5m
"

�
.

I The same upper bound holds for any K

i

. Altogether, we obtain

Prob{A 2 F�
D

and C (A) � t}  6.5 nm2 1

�t
,

2
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Condition numbers of convex optimization

Convex homogeneous feasibility problem

I Much of what has been said for linear optimization can be
generalized to convex optimization.

I Fix a closed regular convex cone C ✓ Rn with dual cone

C̆ := {y 2 Rn | 8x 2 C : hy , xi � 0}

I Homogeneous convex feasibility problem (HCFP)

Input A 2 Rm⇥n (n > m)

Decide the alternative

9x 2 Rn \ {0} : Ax = 0, x 2 C̆ (P)

9y 2 Rm \ {0} : A

T

y 2 C (D)
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Condition numbers of convex optimization

Convex homogeneous feasibility problem
I Most important cases:

Linear Programming : C = Rn

+ = R+ ⇥ . . .⇥ R+

Semidefinite Programming : C = {M 2 R`⇥`, M is pos. semidef.}

I Define

F
P

:= {A | (P) is feasible},

F
D

:= {A | (D) is feasible},

⌃ := F
P

\ F
D

.

I Renegar’s condition number is defined as:

C
R

(A) :=
kAk

dist(A,⌃)
.
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Condition numbers of convex optimization

Convex homogeneous feasibility problem

I The probabilistic analyses for LP-condition numbers relie on the
product structure of the cone C = Rn

+ = R+ ⇥ . . .⇥ R+.

I For general cones (like SDP), we look for a di↵erent, more
coordinate-free approach.

I Suppose A 2 Rm⇥n has rank m. Consider the m-dimensional linear
subspace W := imA

T of Rn.

9x 2 Rn \ {0} : Ax = 0
x 2 C̆

(P) 9y 2 Rm \ {0} : A

T

y 2 C (D)
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product structure of the cone C = Rn

+ = R+ ⇥ . . .⇥ R+.
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subspace W := imA

T of Rn.

9x 2 Rn \ {0} : Ax = 0
x 2 C̆

(P)

,
kerA| {z }
=W

?

\C̆ 6= {0}

9y 2 Rm \ {0} : A

T

y 2 C (D)

,
imA

T

| {z }
=:W

\C 6= {0}
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Condition numbers of convex optimization

Grassmann condition number (1)

I Consider the inputs as an element of the Grassmann manifold

W 2 G
n,m := {W ✓ Rn | W lin. subspace , dimW = m}.

We have to decide the alternative

W

? \ C̆ 6= {0} (P) or W \ C 6= {0} (D)

I Define

F
P

:= {W 2 G
n,m | W? \ C̆ 6= {0}} (primal feasible)

F
D

:= {W 2 G
n,m | W \ C 6= {0}} (dual feasible)

⌃G := F
P

\ F
D

(ill-posed)

I G
n,m is a compact Riemannian manifold. We have thus well-defined

notions of (geodesic) distance (“angle”) and volume.
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Condition numbers of convex optimization

Grassmann condition number (2)

I We define the Grassmann condition number for W 2 G
n,m as

CG(W ) :=
1

sin d(W ,⌃G)
,

where d denotes the geodesic distance in G
n,m.

I The following result (Amelunxen (2011), Belloni, Freund (2009))
separates Renegar’s condition number into an “intrinsic” and
“extrinsic” part.

For A 2 Rm⇥n of rank m and W := imA

T we have

CG(A)  C
R

(A)  (A) · CG(A) .
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Condition numbers of convex optimization

Average analysis of Grassmann condition number

I Fix any closed regular convex cone C ⇢ Rn.

I If A 2 Rm⇥n is standard Gaussian, then W := imA

T is uniformly
distributed in G

n,m (w.r.t. orthogonal invariant volume form).

I With the volume of tube interpretation and some di↵erential
geometry, one can show:

B, Amelunxen (2015)

Prob

⇣
CG(A) �

1

"

⌘
 6 · n " if " < n

� 3
2 .

E(lnCG(A))  2.5 · ln(n) + 2.8.

I It is a challenge to extend this result to a uniform smoothed analysis.
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Smale’s 17th Problem

Smale’s 17th problem

The 17th of S. Smale’s problems for the 21st century asks:

Can a zero of n complex polynomial equations in n unknowns

be found approximately, on the average, in polynomial time

with a uniform algorithm?
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Approximate zeros, condition, and homotopy continuation

Notations

I Let us explain this question in detail.

I For a degree vector d = (d1, . . . , dn) we define

H
d

:= {f = (f1, . . . , fn) | fi 2 C[X0, . . . ,Xn

] homogeneous of degree d

i

}.

I The input size is N := dimC H
d

.

I We look for zeros ⇣ of f in complex projective space Pn: f (⇣) = 0.
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Bombieri-Weyl inner product

I For homogeneous polynomials of degree d

i

,

f

i

(x) =
P

|↵|=d

i

a

i

↵X
↵, g

i

(x) =
P

|↵|=d

i

b

i

↵X
↵,

we define the Bombieri-Weyl hermitian inner product as

hf
i

, g
i

i :=
P

|↵|=d

i

a

i

↵ b

i

↵

�
d

i

↵

��1
.

I This inner product is invariant under the natural action of the
unitary group U(n + 1): up to scaling it is uniquely characterized by
the invariance.

I For f , g 2 H
d

we define hf , gi :=
P

n

i=1hfi , gi i and kf k := hf , f i1/2.
I We have a standard Gaussian distribution on H

d

with density

⇢(f ) =
1

p
2⇡

2N
exp

⇣
� 1

2
kf k2

⌘
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Approximate zeros

I For f 2 H
d

we define the Newton operator N
f

: Pn ! Pn by

N

f

(z) := z �
�
Df (z)|T

z

Pn

��1
f (z).

I Iterating N

f

with starting point x0 yields x0, x1, . . . 2 Pn, where

x

k+1 = N

f

(x
k

)

I Definition (Smale 1986). x 2 Pn is called approximate zero of f with
associated zero ⇣ i↵

8i 2 N : d(x
i

, ⇣)  1

22i�1
d(x0, ⇣).

I Here the distance d refers to the geodesic distance (angle) on the
Riemannian manifold Pn (Fubini-Study metric).
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Condition number

I Let f (⇣) = 0. How much does ⇣ change when we perturb f a little?

I Consider the solution variety V :=
�
(f , ⇣) | f (⇣) = 0

 
✓ H

d

⇥ Pn,
which is a smooth Riemannian submanifold

I If ⇣ is a simple solution of f , there is a locally defined solution map

G : H
d

! Pn

such that f 0 7! (f 0,G (f 0)) is the local inverse of the projection map
V ! H

d

, (f 0, ⇣ 0) 7! f

0 (implicit function theorem).

I Consider the derivative of the solution map

DG (f ) : H
d

! T⇣Pn.

I We define the condition number of f at (f , ⇣) by

µ(f , ⇣) := kf k · kDG (f )k.
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Radius of quadratic convergence

Put D := max
i

d

i

.

Combining Smale’s Gamma Theorem (1986) with the developments in
Shub and Smale (1993–1996), one obtains:

Version of Smale’s Gamma Theorem

If d(x , ⇣)  0.3
D

3/2 µ(f ,⇣)
, then x is an approximate zero of f associated

with ⇣.
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Adaptive linear homotopy continuation (1)

I Given a start system (g , ⇣) 2 V and an input f 2 H
d

.

I Consider the line segment [g , f ] connecting g and f that consists of
the systems

q

t

:= (1� t)g + tf for t 2 [0, 1].

I If [g , f ] does not meet the discriminant variety (i.e., none of the q

t

has a multiple zero), then there exists a unique lifting to V ,

� : [0, 1] ! V , t 7! (f
t

, ⇣
t

),

such that f0 = g .
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Adaptive linear homotopy continuation (2)

H
d

Pn

g

f

q

i

q

i+1

⇣
i

⇣
i+1

z

i

z

i+1

N

q

i+1

⇣

I The idea is to follow the path � numerically: partition [0, 1] into
t0 = 0, . . . , t

k

= 1. Writing q

i

:= q

t

i

, successively compute
approximations z

i

of ⇣
t

i

by Newton’s method starting with z0 := ⇣.
More specifically, compute

z

i+1 := N

q

i+1(zi ).
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Complexity of adaptive linear homotopy continuation

I We compute t

i+1 adaptively from t

i

such that

d(q
i+1, qi ) =

c

D

3/2µ2(q
i

, z
i

))
.

This defines the Adaptive Linear Homotopy ALH algorithm.

I We denote by K (f , g , ⇣) the number k of Newton continuation steps
that are needed to follow the homotopy.

Shub & Smale (1994), Shub (2007)

z

i

is an approximate zero of ⇣
i

for all i . Moreover,

K (f , g , ⇣)  217D3/2

Z 1

0

µ
norm

(�(t))2 k�̇(t)k dt.
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Randomized algorithm

I Shub and Smale had shown that almost all (g , ⇣) 2 V have a
condition number polynomial bounded in N,D.

I However, it is unknown how to e�ciently construct such (g , ⇣).
I Since we don’t know how to construct a good start system (g , ⇣0),

we choose it at random:

I choose g 2 H
d

from standard Gaussian,
I choose one of the Bezout number D := d1 · · · dn many zeros ⇣ of g

uniformly at random.

I E�cient sampling of (g , ⇣) is possible (Beltrán & Pardo 2008).

I Las Vegas Algorithm LV
draw (g , ⇣) 2 V at random
run ALH on input (f , g , ⇣)

I LV has the expected “running time”

K (f ) := E
g ,⇣K (f , g , ⇣).
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Average expected polynomial time

I LV runs in average expected polynomial time:

Beltrán and Pardo (2009, 2011)

E
f

K (f ) = O
�
D

3/2
Nn

�
,

where the expectation is over a standard Gaussian f 2 H
d

.

I When allowing randomized algorithms, this is a solution to Smale’s
17th problem.

I Note that randomness enters here in two ways: as an algorithmic
tool and as a way to measure the performance of algorithms.
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Probabilistic analyses

Smoothed expected polynomial time

Smoothed analysis: let f 2 H
d

and suppose that f is isotropic Gaussian
with mean f and variance �2.

Smoothed analysis (B, Cucker (2011))

sup
kf k1

E
f⇠N(f ,�2

I )K (f ) = O
⇣
D

3/2
Nn

�

⌘
.
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A near solution to Smale’s 17th problem

B, Cucker (2011)

There is a deterministic algorithm for Smale’s 17th problem taking on
standard Gaussian input f 2 H

d

an expected number of arithmetic
operations T (f ) bounded by

E
f

T (f ) = N

O(log logN).

I If D  n, the algorithm runs ALH with the start system (g , ⇣), where

g

i

= X

d

i

i

� X

d

i

0 , ⇣ = (1, . . . , 1)

(the zeros of g
i

consist of roots of unity).
I If D � n, the algorithm runs ALH with the start system (g , ⇣), where

g

i

:= X

d

i

�i

0 X

i

, ⇣ = (1, 0, . . . , 0);

cf. Armentano, B, Béltran, Cucker, Shub, (2016).

s
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Solution to Smale’s 17th problem

I Pierre Lairez had a clever idea: the average analysis assumes a
randomness in the input f 2 H

d

.

I Based on this randomness, one can construct a random start system
(g , ⇣) for ALH.

I This is a general principle. It leads to a deterministic algorithm!

Lairez (2016)

There is a deterministic algorithm for Smale’s 17th problem taking on
standard Gaussian input f 2 H

d

an expected number of arithmetic
operations T (f ) bounded by by polynomial in the input size N.
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Proof ideas

Proof idea for smoothed analysis of ALH (1)

I A relevant idea is the systematic use of Gaussians, which before B &
Cucker were not used in this context.

I Consider the mean square condition number

µ2(q)
2 :=

1

D
X

⇣2V (q)

µ(q, ⇣)2 for g 2 H
d

.

I The analysis of ALH gives

E⇣2V (g)K (f , g , ⇣)  c D

3/2

Z 1

0

µ2(qt)
2 k�̇(t)k dt

 c D

3/2

Z 1

0

µ2(qt)
2 kf k · kgk

kq
t

k2 dt.

I E(kf k2) = 2N (chi-square). Replace kf k by
p
N (cheating a bit).
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Proof idea for smoothed analysis of ALH (2)

I

E⇣2V (g)K (f , g , ⇣)  c D

3/2
N

Z 1

0

µ2(qt)2

kq
t

k2 dt.

I By Fubini,

E
f⇠N(f ,�2

I )Eg⇠N(0,I )E⇣2V (g)K (f , g , ⇣)  c D

3/2
N

Z 1

0

E
⇣µ2(qt)2

kq
t

k2
⌘
dt.

I For fixed t, q
t

= (1� t)g + tf is again Gaussian, q
t

⇠ N(q
t

,�2
t

I ),
with

q

t

= tf , �2
t

= (1� t)2 + �2
t

2.
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Proof idea for smoothed analysis of ALH (3)

Main technical contribution of proof

E
q⇠N(q,�2

I )

⇣µ2(q)2

kqk2
⌘

= O
⇣
n

�2

⌘
.

Using this,

E
f⇠N(f ,�2

I )K (f )  c D

3/2
N

Z 1

0

n

(1� t)2 + �2
t

2
dt = c D

3/2
N

n

�
. 2

A slightly better estimate, with a simpler proof, was obtained by
Armentano, B, Béltran, Cucker, Shub (2016).
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Proof ideas

On proving the main technical contribution (1)

I Put M := Cn⇥(n+1) and consider the map (slightly cheating ...)

 : V ! M, (q, ⇣) 7! M := diag(
p
d1, . . . ,

p
d

n

)�1
Df (⇣).

Recall µ(q, ⇣)/kqk = kM†k.

I The noncentered Gaussian on H
d

defines a distribution on V

(choose q and then one of its D zeros uniformly at random). Then

EH
d

⇣µ2(q)2

kqk2
⌘
= E

V

⇣µ(q, ⇣)2

kqk2
⌘
= EM(kM†k2)

where the last expectation is w.r.t. the distribution on M induced
by  .
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Proof ideas

On proving the main technical contribution (2)

I For ⇣ 2 Pn let R⇣ be the set of those q 2 H
d

that vanish at ⇣ of
order > 1.

I Further, let L⇣ be the orthogonal complement in R⇣ in the space of
q 2 H

d

vanishing at ⇣.

I We obtain an orthogonal decomposition

H
d

= C⇣ � L⇣ � R⇣ , q = k⇣ + g⇣ + h⇣ .

I The density of N(q,�2
I ) factors into Gaussians:

⇢H
d

(k + g + h) = ⇢
C⇣ (k) · ⇢L⇣ (g) · ⇢R⇣ (h).

I
L⇣ is isometrically isomorphic to M⇣ := {M 2 M : M⇣ = 0}
inducing a Gaussian N(M⇣ ,�2

I ) on the fiber M⇣ .



Condition: The Geometry of Numerical Algorithms

Part III: Polynomial Equations

Proof ideas

On proving the main technical contribution (2)

I For ⇣ 2 Pn let R⇣ be the set of those q 2 H
d

that vanish at ⇣ of
order > 1.

I Further, let L⇣ be the orthogonal complement in R⇣ in the space of
q 2 H

d

vanishing at ⇣.

I We obtain an orthogonal decomposition

H
d

= C⇣ � L⇣ � R⇣ , q = k⇣ + g⇣ + h⇣ .

I The density of N(q,�2
I ) factors into Gaussians:

⇢H
d

(k + g + h) = ⇢
C⇣ (k) · ⇢L⇣ (g) · ⇢R⇣ (h).

I
L⇣ is isometrically isomorphic to M⇣ := {M 2 M : M⇣ = 0}
inducing a Gaussian N(M⇣ ,�2

I ) on the fiber M⇣ .



Condition: The Geometry of Numerical Algorithms

Part III: Polynomial Equations

Proof ideas

On proving the main technical contribution (2)

I For ⇣ 2 Pn let R⇣ be the set of those q 2 H
d

that vanish at ⇣ of
order > 1.

I Further, let L⇣ be the orthogonal complement in R⇣ in the space of
q 2 H

d

vanishing at ⇣.

I We obtain an orthogonal decomposition

H
d

= C⇣ � L⇣ � R⇣ , q = k⇣ + g⇣ + h⇣ .

I The density of N(q,�2
I ) factors into Gaussians:

⇢H
d

(k + g + h) = ⇢
C⇣ (k) · ⇢L⇣ (g) · ⇢R⇣ (h).

I
L⇣ is isometrically isomorphic to M⇣ := {M 2 M : M⇣ = 0}
inducing a Gaussian N(M⇣ ,�2

I ) on the fiber M⇣ .



Condition: The Geometry of Numerical Algorithms

Part III: Polynomial Equations

Proof ideas

On proving the main technical contribution (2)

I For ⇣ 2 Pn let R⇣ be the set of those q 2 H
d

that vanish at ⇣ of
order > 1.

I Further, let L⇣ be the orthogonal complement in R⇣ in the space of
q 2 H

d

vanishing at ⇣.

I We obtain an orthogonal decomposition

H
d

= C⇣ � L⇣ � R⇣ , q = k⇣ + g⇣ + h⇣ .

I The density of N(q,�2
I ) factors into Gaussians:

⇢H
d

(k + g + h) = ⇢
C⇣ (k) · ⇢L⇣ (g) · ⇢R⇣ (h).

I
L⇣ is isometrically isomorphic to M⇣ := {M 2 M : M⇣ = 0}
inducing a Gaussian N(M⇣ ,�2

I ) on the fiber M⇣ .



Condition: The Geometry of Numerical Algorithms

Part III: Polynomial Equations

Proof ideas

On proving the main technical contribution (2)

I For ⇣ 2 Pn let R⇣ be the set of those q 2 H
d

that vanish at ⇣ of
order > 1.

I Further, let L⇣ be the orthogonal complement in R⇣ in the space of
q 2 H

d

vanishing at ⇣.

I We obtain an orthogonal decomposition

H
d

= C⇣ � L⇣ � R⇣ , q = k⇣ + g⇣ + h⇣ .

I The density of N(q,�2
I ) factors into Gaussians:

⇢H
d

(k + g + h) = ⇢
C⇣ (k) · ⇢L⇣ (g) · ⇢R⇣ (h).

I
L⇣ is isometrically isomorphic to M⇣ := {M 2 M : M⇣ = 0}
inducing a Gaussian N(M⇣ ,�2

I ) on the fiber M⇣ .



Condition: The Geometry of Numerical Algorithms

Part III: Polynomial Equations

Proof ideas

On proving the main technical contribution (3)
I For M 2 M of full rank with zero ⇣ one can show that

⇢M(M) = ⇢
C⇣ (0) · ⇢M⇣ (M)

I With the coarea formula (transformation of integrals) one shows

EM(kM†k2) =

Z

M
kM†k2⇢M(M) dM

= E⇣2Pn

⇣
Ee⇢M⇣

�
kM†k2

�⌘

Right expectation is over induced distribution of the zeros ⇣ of M,
second expectation is w.r.t. the following conditional density on M⇣ :

e⇢M⇣ (M) = c⇣ ⇢M⇣ (M) det(MM

⇤).

I As for the smoothed analysis of matrix condition numbers one can
show

Ee⇢M⇣

�
kM†k2

�⌘
= O

⇣
n

�2

⌘
.

I Hence EM(kM†k2) = O
⇣

n

�2

⌘
. 2



Condition: The Geometry of Numerical Algorithms

Part III: Polynomial Equations

Proof ideas

On proving the main technical contribution (3)
I For M 2 M of full rank with zero ⇣ one can show that

⇢M(M) = ⇢
C⇣ (0) · ⇢M⇣ (M)

I With the coarea formula (transformation of integrals) one shows

EM(kM†k2) =

Z

M
kM†k2⇢M(M) dM

= E⇣2Pn

⇣
Ee⇢M⇣

�
kM†k2

�⌘

Right expectation is over induced distribution of the zeros ⇣ of M,
second expectation is w.r.t. the following conditional density on M⇣ :

e⇢M⇣ (M) = c⇣ ⇢M⇣ (M) det(MM

⇤).

I As for the smoothed analysis of matrix condition numbers one can
show

Ee⇢M⇣

�
kM†k2

�⌘
= O

⇣
n

�2

⌘
.

I Hence EM(kM†k2) = O
⇣

n

�2

⌘
. 2



Condition: The Geometry of Numerical Algorithms

Part III: Polynomial Equations

Proof ideas

On proving the main technical contribution (3)
I For M 2 M of full rank with zero ⇣ one can show that

⇢M(M) = ⇢
C⇣ (0) · ⇢M⇣ (M)

I With the coarea formula (transformation of integrals) one shows

EM(kM†k2) =

Z

M
kM†k2⇢M(M) dM

= E⇣2Pn

⇣
Ee⇢M⇣

�
kM†k2

�⌘

Right expectation is over induced distribution of the zeros ⇣ of M,
second expectation is w.r.t. the following conditional density on M⇣ :

e⇢M⇣ (M) = c⇣ ⇢M⇣ (M) det(MM

⇤).

I As for the smoothed analysis of matrix condition numbers one can
show

Ee⇢M⇣

�
kM†k2

�⌘
= O

⇣
n

�2

⌘
.

I Hence EM(kM†k2) = O
⇣

n

�2

⌘
. 2



Condition: The Geometry of Numerical Algorithms

Part III: Polynomial Equations

Proof ideas

On proving the main technical contribution (3)
I For M 2 M of full rank with zero ⇣ one can show that

⇢M(M) = ⇢
C⇣ (0) · ⇢M⇣ (M)

I With the coarea formula (transformation of integrals) one shows

EM(kM†k2) =

Z

M
kM†k2⇢M(M) dM

= E⇣2Pn

⇣
Ee⇢M⇣

�
kM†k2

�⌘

Right expectation is over induced distribution of the zeros ⇣ of M,
second expectation is w.r.t. the following conditional density on M⇣ :

e⇢M⇣ (M) = c⇣ ⇢M⇣ (M) det(MM

⇤).

I As for the smoothed analysis of matrix condition numbers one can
show

Ee⇢M⇣

�
kM†k2

�⌘
= O

⇣
n

�2

⌘
.

I Hence EM(kM†k2) = O
⇣

n

�2

⌘
. 2



Condition: The Geometry of Numerical Algorithms

Part III: Polynomial Equations

Proof ideas

Thank you for your attention!
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