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Nullstellensatz theorem

• David Hilbert 1890

• I = 〈p1, . . . ,pm〉 is a polynomial ideal in Q[z1, . . . , zn] and its
variety

V (I) = {z ∈ Cn | p1(z) = · · · = pm(z) = 0}

• Nullstellensatz theorem (weak): (i) and (ii) are equivalent

1 VC(I) = ∅

2 ∃u1, . . . ,um ∈ Q[z1, . . . , zn] such that

m∑
i=1

ui pi = 1



Polydisk nullstellensatz theorem

• The closed unit polydisk

Un
:= {z = (z1, . . . , zn) ∈ Cn | ∀ i = 1, . . . ,n, |zi | ≤ 1}.

• Polydisk nullstellensatz theorem : (i) and (ii) are equivalent

1 VC(I) ∩ Un
= ∅

2 ∃s,u1, . . . ,um ∈ Q[z1, . . . , zn] such that s =
∑m

i=1 ui pi and

VC(s) ∩ Un
= ∅



Effective polydisk nullstellensatz

• Given an ideal I ⊂ Q[z1, . . . , zn], two problems stem from the
previous theorem:

1 Check whether VC(I) ∩ Un
= ∅

2 Compute s ∈ I and u1, . . . ,um such that

s =
m∑

i=1

ui pi and VC(s) ∩ Un
= ∅



Motivation : stabilisation of n-D systems

• A := Q[z1, . . . , zn] the polynomial ring

• Every n-D system P can be represented by a matrix

R ∈ Aq×(q+r)

• Theorem: P is internally stabilizable if the ideal I generated by
the reduced q × q minors of R is devoid from zeros in Un.

• A stabilizing control can be constructed by computing s ∈ I:

VC(s) ∩ Un
= ∅



Existing work

1 Checking VC(I) ∩ Un
= ∅

• zk = xk + i yk and x2
k − y2

k − 1 ≤ 0 emptiness of
semi-algebraic sets : effective but not efficient

• The case I = 〈p〉 : [B. Quadrat and Rouillier, 15]

2 Computation of the polynomial s ∈ I with VC(s) ∩ Un
= ∅

• [Berenstein and Struppa 86] : rational functions

• [Bridges et al. 03] : constructive proof but not effective

• [Xu et. al 94] : Zero-dimensional ideal, also not effective



The radical zero dimensional case

•We restrict the study to zero-dimensional ideal:

]VC(I) <∞

•We also suppose without loss of generality that I is a radical
ideal:

I =
√

I



Intersection with the polydisk

• Goal: For a given zero-dimensional ideal I, check that

VC(I) ∩ Un
= ∅

• Tool: Univariate representation of the complex zeros of I

 A one-to-one mapping between the zeros of I and the roots
of a univariate polynomial

V (I) −→ V (f ) = {t ∈ C | f (t) = 0}
z = (z1, . . . , zn) 7−→ t = a1 z1 + · · ·+ an zn,

and
V (f ) −→ V (I)

t 7−→ (gz1(t), . . . ,gzn(t)),



Intersection with the polydisk: the algorithm

• Compute a Univariate Representation of 〈p1, . . . ,pm〉

{f (t) = 0, z1 = gz1(t), . . . , zn = gzn(t)}

• Isolation into pair of intervals: zk = [ak ,1,ak ,2] + i [bk ,1,bk ,2]

• Compute the sign of [ak ,1,ak ,2]
2 + [bk ,1,bk ,2]

2 − 1

•What if some coordinates are on the unit circle ?

 Cannot conclude

• Need to identify these coordinates or at least to count them

• For each zi , this can be read on the resultant of f (t) and
zi − gzi (t) with respect to t  e.g: via Möbius transform.



Polydisk nullstellensatz theorem

• Goal: A constructive proof for the following theorem

Theorem
Let I := 〈p1, . . . ,pm〉 be a zero-dimensional ideal such that

VC(I) ∩ Un
= ∅.

Then, there exists a polynomial s as well as u1, . . . ,um ∈
Q[z1, . . . , zn] such that

s =
m∑

i=1

ui pi and VC(s) ∩ Un
= ∅



The existing approach: [Xu et al. 94]

• For each zi , compute the elimination polynomial

〈Rzi 〉 = I ∩Q[zi ]

• Factorize each Rzi = Rs,zi × Ru,zi such that

Rs,zi (α) = 0 =⇒ |α| > 1 and Ru,zi (β) = 0 =⇒ |β| ≤ 1

• Construct the polynomial s =
∏n

i=1 Rs,zi

• s vanishes at all the zeros of I ⇒ one can compute polynomials
u1, . . . ,um ∈ Q[z1, . . . , zn] s.t.

s =
m∑

i=1

ui pi

• Problem: Not effective

R(zi) can be irreducible factorization in C[zi ] !



Our approach

• Idea: Apply the previous approach on a system whose
solutions are rational approximations of the solutions of I

1 Compute rational approximations of the solutions of I

2 Compute the corresponding polynomials Rs,zi in Q[zi ]

3 Compute the cofactors ui in the nullstellensatz relation

4 Use these cofactors to deduce the polynomial s

• Start with a Univariate Representation of I = 〈p1, . . . ,pm〉

• Let Ir := 〈f , z1 − gz1 , . . . , zn − gzn〉 ⊂ Q[t , z1, . . . , zn]



Our approach

• Compute f̃ (t) =
∏n

k=1 (t − γ̃k ) where γ̃k are rational
approximations of the roots of f

• For each zi compute R̃s,zi =
∏

(zi − gzi (γ̃k )) such that
|gzi (γ̃k )| > 1

• All the R̃s,zi are now in Q[zi ]

• Compute the product of R̃s,zi , s̃ =
∏n

i=1 R̃s,zi

=⇒ s̃ ∈ 〈̃f , z1 − gz1 , . . . , zn − gzn〉,

=⇒ ∃ ũ0, ũ1, . . . , ũn ∈ Q[t , z1, . . . , zn] such that

s̃ = ũ0 f̃ +
n∑

i=1

ũi(zi − gzi )



Main result

• Let ε > 0 be such that maxk∈{1,...,n}(|γk − γ̃k |) < ε

• ũi,ε, f̃ε and s̃ε are the previous approximated polynomials wrt ε

Theorem

1 The polynomial s = s̃ε − ũ0,ε (̃fε − f ) belongs to the ideal Ir .

2 There exists ε > 0 such that s(
∑n

i=1 ai zi , z1, . . . , zn) has no
zeros in the Un.

Algorithm: For successive small ε

• Compute the polynomial s

• Check that VC(s) ∩ Un
= ∅ [B. et al. 15]



Sketch of proof

1 s = s̃ε − ũ0,ε (f̃ε − f ) =
∑n

i=1 ũi,ε (zi − gzi ) + ũ0,ε f , so that s
vanishes on V (Ir ), which implies s ∈ Ir

2 We prove that ∀λ ∈ Un
, |s(λ)| > 0

On the one hand,

∀λ ∈ Un
, |ũ0,ε(λ)(f̃ε(λ)− f (λ))| ≤ ε ρ δ

where ρ (resp., δ) does not depend on ε.

On the other hand,

∀ λ ∈ Un
, |s̃ε(λ)| ≥ (m − ε)d .

⇒ for sufficiently small ε,

∀λ ∈ Un
, |s(λ)| ≥ |s̃ε(λ)| − |ũ0,ε(λ)(f̃ε(λ)− f (λ))|

≥ (m − ε)d − ε ρ δ
> 0.



Example

• I = 〈p1,p2〉 where p1 = z2
1 − 2 z1 − 2 and p2 = z1 + z2 − 2

• Both p1 and p2 have zeros inside U2

• V (I) : {(1−
√

3,1 +
√

3), (1 +
√

3,1−
√

3)} V (I) ∩ U2
= ∅

• The elimination polynomials z2
i − 2 zi − 2 are irreducible in Q[zi ]

• A univariate representation of I is given by

f (t) := t2 − 2 t − 2 = 0, z1 = t , z2 = 2− t .

The roots of f (t) are γ1 ≈ −0.73 and γ2 ≈ 2.73

Set ε = 1
2 , we get the approximate roots (in Q) γ̃1 = − 1

2 and γ̃2 = 3

which yields the approximated polynomials

f̃ (t) =
(

t +
1
2

)
(t − 3), s̃(z1, z2) = (z1 − 3)

(
z2 −

5
2

)



Example (next)

From the previous polynomials, we obtain

u0(t) = −1, (̃f − f )(t) = −1
2

t +
1
2
.

Finally, after substituting t = z1 in f̃ − f , we get:

s(z1, z2) = z1 z2 − 3 z1 − 3 z2 + 8.



Conclusion and futur work

• Complete Maple implementation

• Investigate the size of the output wrt the distance of the
solutions from the polydisk

• Tackle the general polydisk nullstellensatz problem Ideals
with arbitrary dimension.

• Small part of a larger module theory over the ring of rational
fractions with no poles in the unit polydisk

A := { r
s
|0 6= s, r ∈ R[z1, . . . , zn],VC(s) ∩ Un

= ∅}

VC(I) ∩ Un
= ∅ =⇒ projectivity

[Deligne thm]: Projectivity =⇒ freeness (no constructive proof)

Thank you
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Extension to systems with arbitrary dimension


