Tight and rigorous error bounds for basic

building blocks of double-word arithmetic

Mioara Joldes, Jean-Michel Muller, Valentina Popescu

JNCF - January 2017

N

CAVPRR ¥

AP LAAS-CNRS

Floating point arithmetics

A real number X is approximated in a machine by a rational
T = M&L‘ . Qez_p+17

— My is the significand, a signed integer number of p digits in radix 2 s.t.
2P~ < |Mg| < 2P —1;
— ey is the exponent, a signed integer (emin < €z < €maaz)-

1/ 18

Floating point arithmetics

A real number X is approximated in a machine by a rational
T = M&Y: . 291_p+17

— My is the significand, a signed integer number of p digits in radix 2 s.t.
2P~ < |Mg| < 2P —1;

— ey is the exponent, a signed integer (emin < €z < €maaz)-

IEEE 754-2008: Most common formats

@ Single (binary32) precision format:

23
[s[e] m

@ Double (binary64) precision format:
11 52

GL e | =

1/ 18

Floating point arithmetics

A real number X is approximated in a machine by a rational
T = MZ‘ . 2€z_p+17

— My is the significand, a signed integer number of p digits in radix 2 s.t.
2P~ < |Mg| < 2P —1;

— ey is the exponent, a signed integer (emin < €z < €maaz)-

IEEE 754-2008: Most common formats

@ Single (binary32) precision format:

8 23
L[e] m

@ Double (binary64) precision format:

1 52
[s[e] m |

Rounding modes

@ 4 rounding modes: RD, RU, RZ, RN;

@ Correct rounding for: +, —, X, +, i

@ Portability, determinism.

1/ 18

Applications

— Computations with increased (multiple) precision in numerical applications.

Chaotic dynamical systems:

@ bifurcation analysis;

@ compute periodic orbits (e.g., Hénon map, Lorenz
attractor);

o celestial mechanics (e.g., stability of the solar
system).
Experimental mathematics:

@ computational geometry (e.g., kissing numbers);

@ polynomial optimization etc.

2 /18

What is a double-word number?

A double-word number x is the unevaluated sum xj + 2, of two floating-point
numbers z; and x, such that
zrn = RN ().

3 /18

What is a double-word number?

A double-word number x is the unevaluated sum xj + 2, of two floating-point

numbers zp and x¢ such that
zrn = RN ().

— Called double-double when using the binary64 standard format.

Example: 7 in double-double

pr = 11.0010010000111111011010101000100010000101101000110002,
and
pe = 1.00011010011000100110001100110001010001011100000001115 x 27%3;

Ph + pe <> 107 bit FP approx.

3 /18

— Not the same as IEEE 754-2008 standard’s binary128/quadruple-precision.

Double-word (using

binary64,/double-precision):

Binary128/quadruple-precision:

4 /18

— Not the same as IEEE 754-2008 standard’s binary128/quadruple-precision.

Double-word (using

binary64,/double-precision):

o “wobbling precision” > 107 bits Binary128/quadruple-precision:

of precision; @ 113 bits of precision;

4 /18

— Not the same as IEEE 754-2008 standard’s binary128/quadruple-precision.

Double-word (using

binary64,/double-precision):

o “wobbling precision” > 107 bits Binary128/quadruple-precision:

of precision; @ 113 bits of precision;
@ exponent range limited by @ larger exponent range (15 bits):
binary64 (11 bits) i.e. —1022 to —16382 to 16383;

1023;

4 /18

— Not the same as IEEE 754-2008 standard’s binary128/quadruple-precision.

Double-word (using

binary64,/double-precision):

o “wobbling precision” > 107 bits Binary128/quadruple-precision:

of precision; @ 113 bits of precision;

@ exponent range limited by @ larger exponent range (15 bits):
binary64 (11 bits) i.e. —1022 to —16382 to 16383;
1023;

o defined with all rounding modes
@ lack of clearly defined rounding
modes;

4 /18

— Not the same as IEEE 754-2008 standard’s binary128/quadruple-precision.

Double-word (using

binary64,/double-precision):

@ “wobbling precision” > 107 bits
of precision;

@ exponent range limited by
binary64 (11 bits) i.e. —1022 to
1023;

@ lack of clearly defined rounding
modes;

@ manipulated using error-free
transforms (next slide).

Binary128/quadruple-precision:

113 bits of precision;

larger exponent range (15 bits):
—16382 to 16383;

defined with all rounding modes

not implemented in hardware on
widely available processors.

4 /18

Error-Free Transforms

Theorem 1 (25um algorithm)

Let a and b be FP numbers. Algorithm 25um computes two FP numbers s and
e that satisfy the following:

e s+e=a+b exactly;
e s= RN(a+0b).

(RN stands for performing the operation in rounding to nearest rounding mode.)

a
J Algorithm 1 (25um (a, b))
] - s+ RN(a+b)
b 28um TS RN(s — b)

e+ RN(RN(a—t)+ RN(b— RN(s—1)))
J return (s,e)

— 6 FP operations (proved to be optimal unless we have information on the
ordering of |a| and |b|)

5 /18

Error-Free Transforms

Theorem 2 (Fast2Sum algorithm)

Let a and b be FP numbers that satisfy e, > ey(|a| > |b|). Algorithm Fast2Sum
computes two FP numbers s and e that satisfy the following:

@ s+e=a+b exactly;
e s= RN(a+0b).

Algorithm 2 (Fast2Sum (a, b))

s+ RN(a+b)
z4+ RN(s—a)
e+ RN(b—2z)

return (s,e)

— 3 FP operations

6 /18

Error-Free Transforms

Theorem 3 (2ProdFMA algorithm)

Let a and b be FP numbers, e, + ey, > epmin + p — 1. Algorithm 2ProdFMA
computes two FP numbers p and e that satisfy the following:

e p+e=a-b exactly;

e p= RN(a-b).
a
J Algorithm 3 (2ProdFMA (a, b))
b— 2Prod—p p<+ RN(a-b)
e < fma(a,b, —p)
J return (p,e)
e

— 2 FP operations
— hardware-implemented FMA available in latest processors.

7 /18

Previous work:

@ concept introduced by Dekker [DEK71] together with some algorithms for basic
operations;

@ Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider
format;

o library written by Briggs [BRI98] - that is no longer maintained;
o QD library written by Bailey [Li.et.al02].

8/ 18

Previous work:

@ concept introduced by Dekker [DEK71] together with some algorithms for basic
operations;

@ Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider
format;

o library written by Briggs [BRI98] - that is no longer maintained;
o QD library written by Bailey [Li.et.al02].

Problems:

1. most algorithms come without correctness proof and error bound;
2. some error bounds published without a proof;

3. differences between published and implemented algorithms.

8/ 18

Previous work:

@ concept introduced by Dekker [DEK71] together with some algorithms for basic
operations;

@ Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider
format;

o library written by Briggs [BRI98] - that is no longer maintained;
o QD library written by Bailey [Li.et.al02].

Problems:

1. most algorithms come without correctness proof and error bound;
2. some error bounds published without a proof;

3. differences between published and implemented algorithms.

—— Strong need to “clean up” the existing literature.

8/ 18

Previous work:

@ concept introduced by Dekker [DEK71] together with some algorithms for basic
operations;

@ Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider
format;

o library written by Briggs [BRI98] - that is no longer maintained;
o QD library written by Bailey [Li.et.al02].

Problems:

1. most algorithms come without correctness proof and error bound;
2. some error bounds published without a proof;

3. differences between published and implemented algorithms.

—— Strong need to “clean up” the existing literature.

Notation:

@ p represents the precision of the underlying FP format;
o ulp (z) = 2lee2lzll=P+1 for 4 £ 0;

e u=2""=1lulp(1) denotes the roundoff error unit.

8/ 18

Addition: DWPIusFP(xp, xy,y)

Algorithm 4
1: (sh, se) < 2Sum(zh,y)
2: U 4— RN(QZ@ =+ 84)
3: (zn, z¢) + Fast2Sum(sp,v)
4: return (zp, z¢)

— implemented in the QD library;
— no previous error bound published;
— relative error bounded by
2.27°F
1—-2-2-»

which is less than 2-272? 4+ 5.275 as soon as p > 4;

=2.27% 4 4.27% 4 8.7 ...

9/ 18

Addition: DWPIusFP(xp, xy,y)

Algorithm 4

1: (sh, se) < 2Sum(zh,y)

2: U 4— RN(QZ@ +84)

3: (zn, z¢) + Fast2Sum(sp,v)
4: return (zp, z¢)

— implemented in the QD library;
— no previous error bound published;
— relative error bounded by
2.272
1-2.2-»7
which is less than 2-272? 4+ 5.275 as soon as p > 4;

Asymptotically optimal bound

Letwp =1, 2,=(2"—1)-27?, and y = —%(1 — 277). Then:
—Zh+Z[=%+3-2_p_1 and;
—w+y=%+3-2_p_1—2_2p:

— relative error

=2.27% 4 4.27% 4 8.7 ...

2.27%
1+43-22p—2.2-2

~2.27% _¢g.27%,

9/ 18

Sketch of the proof

Lemma 4 (Sterbenz Lemma)

Let a and b be two positive FP numbers. If

<b< 2a,

[CIRS

then a — b is a floating-point number, so that RN (a — b) = a — b.

Let a and b be FP numbers, and let s = RN (a +b). If s # 0 then

5> max{% ulp (a), % ulp(b)} .

10 / 18

Sketch of the proof

W.lo.g. |zn| > |y|; zn positive; 1 < zp, < 2 — 2u.

11 / 18

Sketch of the proof

W.lo.g. |zn| > |y|; zn positive; 1 < zp, < 2 — 2u.

[Casel:] If —xp <y < —xn/2: from Sterbenz Lemma s, =z, +y and s; = 0.

From Lemma 5 |sn| > % ulp (z4), so |sn| > |2el.
Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that

zn + 20 = Sp +v = x + y exactly.

11 / 18

Sketch of the proof

W.lo.g. |zn| > |y|; zn positive; 1 < zp, < 2 — 2u.

[Casel:] If —xp <y < —xn/2: from Sterbenz Lemma s, =z, +y and s; = 0.
From Lemma 5 |sn| > % ulp (z4), so |sn| > |2el.

Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that

zn + 20 = Sp +v = x + y exactly.

[Case2:] If —xn/2 < y < @h, then 1 < 22 < g, +y < 2xp, so that s, > 1/2.
One can prove that |z; + y¢| < 3u (two cases), so |v| < 3u, s.t. s, > |v]: we can use
Algorithm Fast2Sum at line 3 of the algorithm.

11 / 18

Sketch of the proof

W.lo.g. |zn| > |y|; zn positive; 1 < zp, < 2 — 2u.

[Casel:] If —xp <y < —xn/2: from Sterbenz Lemma s, =z, +y and s; = 0.
From Lemma 5 |sn| > % ulp (z4), so |sn| > |2el.

Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that

zn + 20 = Sp +v = x + y exactly.

[Case2:] If —xn/2 < y < @h, then 1 < 22 < g, +y < 2xp, so that s, > 1/2.
One can prove that |z; + y¢| < 3u (two cases), so |v| < 3u, s.t. s, > |v]: we can use
Algorithm Fast2Sum at line 3 of the algorithm.

[Case2a:] If xn + y < 2 then |s¢] < u, so that |z, + s¢| < 2u, hence,
v =2+ 8¢+ €, with [g] < u?.

Therefore z, + z¢ = s, + v = x + y + € and the relative error

€ c_ £ 20
le+yl = 3 —u~ 1—-2u’

11 / 18

Addition: AccurateDWPIlusDW (z},, ¢, yn, ye)

Algorithm 5

: (Sh, s¢) < 2Sum(zn, yn)

: (th,tg) — 2Sum(xg,yg)
¢4 RN (s¢+tn)

(vn,ve) < Fast2Sum(sp, c)
w +— RN (tg + ’Uz)

(2n,2ze) < Fast2Sum(vp, w)
return (zp, z¢)

N

SN

— previously published relative error bound [Li.et.al02]: 2 -2727;

12 / 18

Addition: AccurateDWPIlusDW (z},, ¢, yn, ye)

Algorithm 5

: (Sh,s¢) < 2Sum(xn, yr)

: (th,tg) — 2Sum(xg,yg)

: ¢4 RN (s¢+tn)

: (vn,ve) < Fast2Sum(sp, c)
W 4— RN(tg-l—’Uz)

: (2n, ze) < Fast2Sum(vp, w)
: return (2, 2¢)

NS GAN W N N

— previously published relative error bound [Li.et.al02]: 2 -2727;
— FALSE, showed by the counterexample:

xp=2" —1, xp=—(2" —1)- 27771,
yn = —(2" = 5)/2, ye = —(2" = 1)- 27777,
which leads to a relative error asymptotically equivalent to 2.25 x 2727;

12 / 18

Addition: AccurateDWPIlusDW (z},, ¢, yn, ye)

Algorithm 5

1: (Sn,Se) < 2Sum(xh, yn)

2: (tn,te) < 2Sum(ze,ye)

3: Cc 4+ RN(S@ + 'L’h)

4: (vp,ve) < Fast2Sum(sp, c)
5w 4+ RN(tg + ’Ue)

6: (2zn, z¢) < Fast2Sum(vp, w)
7: return (zp, 2¢)

— previously published relative error bound [Li.et.al02]: 2 -2727;
— FALSE, showed by the counterexample:

xp=2" —1, xp=—(2" —1)- 27771,
yn = —(2" =5)/2, ye = —(2" = 1)- 2777,

which leads to a relative error asymptotically equivalent to 2.25 x 2727;
— rigorous proven error bound less than

3.27%7 4 13.27%,

as soon as p > 6;
— sloppy version available, but less accurate.

12 / 18

Multiplication: DWTimesFP (z},, x4, y)

Algorithm 6

1: (cp,ce1) « Fast2Mult(xp,y)
2: Cp2 < RN(J:@ o y)

3: cp3 — RN(Cel aF C[z)

4: (zh, Zg) — Fast25um(ch, 043)
5: return (zp, 2¢)

— implemented in Briggs and Bailey's libraries;
— no previously published error bound;
— we proved that if p > 3 the relative error is less than

3.27%;

— speed and accuracy can be improved if an FMA instruction is available (merging
lines 2 and 3).

13 / 18

Multiplication: DWTimesDW (z,, z¢, yn, y¢)

Algorithm 7

g (Ch,Cel) = Fast2Mu/t(xh,yh)
: o1 — RN(l‘h . y[)
s teo — RN(wz - yh)
: co2 < RN (ter + teo)

ce3 < RN (cer + ce2)
: (zn, 20) < Fast2Sum(cy, ce3)
: return (zn, 2¢)

NS GR W N N

— suggested by Dekker and implemented in Briggs and Bailey's libraries;
— Dekker proved a relative error bound of 11 - 27 2p.
— we improved it, proving that if p > 4 the relative error is less than

7.277P,

— speed and accuracy can be improved if an FMA instruction is available.

14 / 18

Division: DWDivFP1(zy,, x4, y)

Algorithm 8

cth — RN(ach/y)

: (7h, me) < Fast2Mult(ty, y)
: (On,d") < 2Sum(zp, —mn)
-8 — RN(a?g —ﬂ'g)

: 0¢ < RN (5, + 5//)

c 04— RN((sh-i-(;g)

s te RN(&/y)

b (Zh,Zg) — Fast25um(th,tg)
: return (zn, 2¢)

© ® NS G R W N

— algorithm suggested by Bailey;
— previously known error bound [Li.et.al02] of 4 - 2727;

15 / 18

Division: DWDivFP1(zy,, x4, y)

Algorithm 8

cth — RN(ach/y)

: (7h, me) < Fast2Mult(ty, y)
: (On,d") < 2Sum(zp, —mn)
-8 — RN(a?g —ﬂ'g)

- 00 +— RN (5, -+ 5//)

c 04— RN((sh-i-(;g)

s te RN(6/y)

b (Zh,Zg) — Fast25um(th,tg)
: return (zn, 2¢)

© ® NS G R W N

— algorithm suggested by Bailey;
— previously known error bound [Li.et.al02] of 4 - 2727;
— Improvement: we showed that the addition in line 3 is always exact.

— new algorithm

15 / 18

Division: DWDivFP2(zy,, x4, y)

Algorithm 9

sty — RN(a:h/y)

: (7Th,71'4) +— Fast2Mu/t(th,y)
: 5h = RN(.’Eh —TFh)

TR RN(QM — 71'4)

c 0 — RN((;h-i-(;z)

:te — RN(6/y)

: (Zh,Zg) — Fast25um(th,tg)
- return (23, 2¢)

© NS G A W N N

— less FP operations, but mathematically equivalent;
— slightly improved error bound:
[
Log=2p
2)
as soon as p > 4.

16 / 18

Previously ILefrgest f EP
Algorithm known Our bound refatlve error go
bound our_1d in ops
experiments

DWPIlusFP ? 2u? + 5u3 2u? — 6u> 10
SloppyDWPIlusDW N/A N/A 1 11
AccurateDWPIlusDW || 2u? (wrong) | 3u? + 13u3 2.25u? 20
DWTimesFP1 4u? 2u? 1.5u2 10
DWTimesFP2 ? 3u? 2.517u? 7
DWTimesFP3 (fma) N/A 2u? 1.984u? 6
DWTimesDW1 11u? Tu? 4.9916u? 9
DWTimesDW?2 (fma) || N/A 5u? 3.936u? 9
DWDivFP1* 4u? 3.5u2 2.95u2 16
DWDivFP2* N/A 3.5u2 2.95u? 10
DWDivDW1* ? 15u? + 56u3 | 8.465u? 24
DWDivDW2* N/A 15u2 + 56u3 | 8.465u> 18
DWDivDW3 (fma) N/A 9.8u? 5.922u2 31

17 / 18

Conclusions

— many similar algorithms with small differences;
— no correctness proofs and error bounds;

— need to clean up the literature and implementation;

Tight and rigorous error bounds for basic building blocks of double-word arithmetic. Submitted to ACM
TOMS journal. hal.archives-ouvertes.fr/hal-01351529

18 / 18

hal.archives-ouvertes.fr/hal-01351529

Conclusions

— many similar algorithms with small differences;

— no correctness proofs and error bounds;

— need to clean up the literature and implementation;

+ we looked at 13 algorithms, both old and new;

+ we compared them and provided correctness proofs and error bounds;

+ code available online at: http://homepages.laas.fr/mmjoldes/campary/.

Tight and rigorous error bounds for basic building blocks of double-word arithmetic. Submitted to ACM
TOMS journal. hal.archives-ouvertes.fr/hal-01351529

18 / 18

hal.archives-ouvertes.fr/hal-01351529

