
Tight and rigorous error bounds for basic
building blocks of double-word arithmetic

Mioara Joldes, Jean-Michel Muller, Valentina Popescu

JNCF - January 2017

AMPAR
CudA Multiple Precision ARithmetic librarY

Floating point arithmetics

A real number X is approximated in a machine by a rational

x = Mx · 2ex−p+1,

– Mx is the significand, a signed integer number of p digits in radix 2 s.t.
2p−1 ≤ |Mx| ≤ 2p − 1;

– ex is the exponent, a signed integer (emin ≤ ex ≤ emax).

IEEE 754-2008: Most common formats

Single (binary32) precision format:

s e m

1 8 23

Double (binary64) precision format:

s e m

1 11 52

Rounding modes

4 rounding modes: RD, RU, RZ, RN;

Correct rounding for: +,−,×,÷,√;

Portability, determinism.

1 / 18

Floating point arithmetics

A real number X is approximated in a machine by a rational

x = Mx · 2ex−p+1,

– Mx is the significand, a signed integer number of p digits in radix 2 s.t.
2p−1 ≤ |Mx| ≤ 2p − 1;

– ex is the exponent, a signed integer (emin ≤ ex ≤ emax).

IEEE 754-2008: Most common formats

Single (binary32) precision format:

s e m

1 8 23

Double (binary64) precision format:

s e m

1 11 52

Rounding modes

4 rounding modes: RD, RU, RZ, RN;

Correct rounding for: +,−,×,÷,√;

Portability, determinism.

1 / 18

Floating point arithmetics

A real number X is approximated in a machine by a rational

x = Mx · 2ex−p+1,

– Mx is the significand, a signed integer number of p digits in radix 2 s.t.
2p−1 ≤ |Mx| ≤ 2p − 1;

– ex is the exponent, a signed integer (emin ≤ ex ≤ emax).

IEEE 754-2008: Most common formats

Single (binary32) precision format:

s e m

1 8 23

Double (binary64) precision format:

s e m

1 11 52

Rounding modes

4 rounding modes: RD, RU, RZ, RN;

Correct rounding for: +,−,×,÷,√;

Portability, determinism.

1 / 18

Applications

→ Computations with increased (multiple) precision in numerical applications.

Chaotic dynamical systems:

bifurcation analysis;

compute periodic orbits (e.g., Hénon map, Lorenz
attractor);

celestial mechanics (e.g., stability of the solar
system).

Experimental mathematics:

computational geometry (e.g., kissing numbers);

polynomial optimization etc.

-0.4

-0.2

0

0.2

0.4

-1.5 -1 -0.5 0 0.5 1 1.5

x2

x1

2 / 18

What is a double-word number?

Definition:

A double-word number x is the unevaluated sum xh + x` of two floating-point
numbers xh and x` such that

xh = RN (x).

→ Called double-double when using the binary64 standard format.

Example: π in double-double

ph = 11.0010010000111111011010101000100010000101101000110002,

and

p` = 1.00011010011000100110001100110001010001011100000001112 × 2−53;

ph + p` ↔ 107 bit FP approx.

3 / 18

What is a double-word number?

Definition:

A double-word number x is the unevaluated sum xh + x` of two floating-point
numbers xh and x` such that

xh = RN (x).

→ Called double-double when using the binary64 standard format.

Example: π in double-double

ph = 11.0010010000111111011010101000100010000101101000110002,

and

p` = 1.00011010011000100110001100110001010001011100000001112 × 2−53;

ph + p` ↔ 107 bit FP approx.

3 / 18

Remark

−→ Not the same as IEEE 754-2008 standard’s binary128/quadruple-precision.

Double-word (using
binary64/double-precision):

“wobbling precision” ≥ 107 bits
of precision;

exponent range limited by
binary64 (11 bits) i.e. −1022 to
1023;

lack of clearly defined rounding
modes;

manipulated using error-free
transforms (next slide).

Binary128/quadruple-precision:

113 bits of precision;

larger exponent range (15 bits):
−16382 to 16383;

defined with all rounding modes

not implemented in hardware on
widely available processors.

4 / 18

Remark

−→ Not the same as IEEE 754-2008 standard’s binary128/quadruple-precision.

Double-word (using
binary64/double-precision):

“wobbling precision” ≥ 107 bits
of precision;

exponent range limited by
binary64 (11 bits) i.e. −1022 to
1023;

lack of clearly defined rounding
modes;

manipulated using error-free
transforms (next slide).

Binary128/quadruple-precision:

113 bits of precision;

larger exponent range (15 bits):
−16382 to 16383;

defined with all rounding modes

not implemented in hardware on
widely available processors.

4 / 18

Remark

−→ Not the same as IEEE 754-2008 standard’s binary128/quadruple-precision.

Double-word (using
binary64/double-precision):

“wobbling precision” ≥ 107 bits
of precision;

exponent range limited by
binary64 (11 bits) i.e. −1022 to
1023;

lack of clearly defined rounding
modes;

manipulated using error-free
transforms (next slide).

Binary128/quadruple-precision:

113 bits of precision;

larger exponent range (15 bits):
−16382 to 16383;

defined with all rounding modes

not implemented in hardware on
widely available processors.

4 / 18

Remark

−→ Not the same as IEEE 754-2008 standard’s binary128/quadruple-precision.

Double-word (using
binary64/double-precision):

“wobbling precision” ≥ 107 bits
of precision;

exponent range limited by
binary64 (11 bits) i.e. −1022 to
1023;

lack of clearly defined rounding
modes;

manipulated using error-free
transforms (next slide).

Binary128/quadruple-precision:

113 bits of precision;

larger exponent range (15 bits):
−16382 to 16383;

defined with all rounding modes

not implemented in hardware on
widely available processors.

4 / 18

Remark

−→ Not the same as IEEE 754-2008 standard’s binary128/quadruple-precision.

Double-word (using
binary64/double-precision):

“wobbling precision” ≥ 107 bits
of precision;

exponent range limited by
binary64 (11 bits) i.e. −1022 to
1023;

lack of clearly defined rounding
modes;

manipulated using error-free
transforms (next slide).

Binary128/quadruple-precision:

113 bits of precision;

larger exponent range (15 bits):
−16382 to 16383;

defined with all rounding modes

not implemented in hardware on
widely available processors.

4 / 18

Error-Free Transforms

Theorem 1 (2Sum algorithm)

Let a and b be FP numbers. Algorithm 2Sum computes two FP numbers s and
e that satisfy the following:

s+ e = a+ b exactly;

s = RN (a+ b).

(RN stands for performing the operation in rounding to nearest rounding mode.)

Algorithm 1 (2Sum (a, b))

s← RN (a+ b)
t← RN (s− b)
e← RN (RN (a− t) + RN (b− RN (s− t)))
return (s, e)

−→ 6 FP operations (proved to be optimal unless we have information on the
ordering of |a| and |b|)

5 / 18

Error-Free Transforms

Theorem 2 (Fast2Sum algorithm)

Let a and b be FP numbers that satisfy ea ≥ eb(|a| ≥ |b|). Algorithm Fast2Sum
computes two FP numbers s and e that satisfy the following:

s+ e = a+ b exactly;

s = RN (a+ b).

Algorithm 2 (Fast2Sum (a, b))

s← RN (a+ b)
z ← RN (s− a)
e← RN (b− z)
return (s, e)

−→ 3 FP operations

6 / 18

Error-Free Transforms

Theorem 3 (2ProdFMA algorithm)

Let a and b be FP numbers, ea + eb ≥ emin + p− 1. Algorithm 2ProdFMA
computes two FP numbers p and e that satisfy the following:

p+ e = a · b exactly;

p = RN (a · b).

Algorithm 3 (2ProdFMA (a, b))

p← RN (a · b)
e← fma(a, b,−p)
return (p, e)

−→ 2 FP operations

−→ hardware-implemented FMA available in latest processors.

7 / 18

Previous work:

concept introduced by Dekker [DEK71] together with some algorithms for basic
operations;

Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider
format;

library written by Briggs [BRI98] - that is no longer maintained;

QD library written by Bailey [Li.et.al02].

Problems:
1. most algorithms come without correctness proof and error bound;
2. some error bounds published without a proof;
3. differences between published and implemented algorithms.

−→ Strong need to “clean up” the existing literature.

Notation:

p represents the precision of the underlying FP format;

ulp (x) = 2blog2 |x|c−p+1, for x 6= 0;

u = 2−p = 1
2

ulp (1) denotes the roundoff error unit.

8 / 18

Previous work:

concept introduced by Dekker [DEK71] together with some algorithms for basic
operations;

Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider
format;

library written by Briggs [BRI98] - that is no longer maintained;

QD library written by Bailey [Li.et.al02].

Problems:
1. most algorithms come without correctness proof and error bound;
2. some error bounds published without a proof;
3. differences between published and implemented algorithms.

−→ Strong need to “clean up” the existing literature.

Notation:

p represents the precision of the underlying FP format;

ulp (x) = 2blog2 |x|c−p+1, for x 6= 0;

u = 2−p = 1
2

ulp (1) denotes the roundoff error unit.

8 / 18

Previous work:

concept introduced by Dekker [DEK71] together with some algorithms for basic
operations;

Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider
format;

library written by Briggs [BRI98] - that is no longer maintained;

QD library written by Bailey [Li.et.al02].

Problems:
1. most algorithms come without correctness proof and error bound;
2. some error bounds published without a proof;
3. differences between published and implemented algorithms.

−→ Strong need to “clean up” the existing literature.

Notation:

p represents the precision of the underlying FP format;

ulp (x) = 2blog2 |x|c−p+1, for x 6= 0;

u = 2−p = 1
2

ulp (1) denotes the roundoff error unit.

8 / 18

Previous work:

concept introduced by Dekker [DEK71] together with some algorithms for basic
operations;

Linnainmaa [LIN81] suggested similar algorithms assuming an underlying wider
format;

library written by Briggs [BRI98] - that is no longer maintained;

QD library written by Bailey [Li.et.al02].

Problems:
1. most algorithms come without correctness proof and error bound;
2. some error bounds published without a proof;
3. differences between published and implemented algorithms.

−→ Strong need to “clean up” the existing literature.

Notation:

p represents the precision of the underlying FP format;

ulp (x) = 2blog2 |x|c−p+1, for x 6= 0;

u = 2−p = 1
2

ulp (1) denotes the roundoff error unit.

8 / 18

Addition: DWPlusFP(xh, x`, y)

Algorithm 4

1: (sh, s`)← 2Sum(xh, y)
2: v ← RN (x` + s`)
3: (zh, z`)← Fast2Sum(sh, v)
4: return (zh, z`)

– implemented in the QD library;
– no previous error bound published;
– relative error bounded by

2 · 2−2p

1− 2 · 2−p
= 2 · 2−2p + 4 · 2−3p + 8 · 2−4p + · · · ,

which is less than 2 · 2−2p + 5 · 2−3p as soon as p ≥ 4;

Asymptotically optimal bound

Let xh = 1, x` = (2p − 1) · 2−2p, and y = − 1
2
(1− 2−p). Then:

– zh + z` =
1
2
+ 3 · 2−p−1 and;

– x+ y = 1
2
+ 3 · 2−p−1 − 2−2p;

– relative error
2 · 2−2p

1 + 3 · 2−p − 2 · 2−2p
≈ 2 · 2−2p − 6 · 2−3p.

9 / 18

Addition: DWPlusFP(xh, x`, y)

Algorithm 4

1: (sh, s`)← 2Sum(xh, y)
2: v ← RN (x` + s`)
3: (zh, z`)← Fast2Sum(sh, v)
4: return (zh, z`)

– implemented in the QD library;
– no previous error bound published;
– relative error bounded by

2 · 2−2p

1− 2 · 2−p
= 2 · 2−2p + 4 · 2−3p + 8 · 2−4p + · · · ,

which is less than 2 · 2−2p + 5 · 2−3p as soon as p ≥ 4;

Asymptotically optimal bound

Let xh = 1, x` = (2p − 1) · 2−2p, and y = − 1
2
(1− 2−p). Then:

– zh + z` =
1
2
+ 3 · 2−p−1 and;

– x+ y = 1
2
+ 3 · 2−p−1 − 2−2p;

– relative error
2 · 2−2p

1 + 3 · 2−p − 2 · 2−2p
≈ 2 · 2−2p − 6 · 2−3p.

9 / 18

Sketch of the proof

Lemma 4 (Sterbenz Lemma)

Let a and b be two positive FP numbers. If

a

2
≤ b ≤ 2a,

then a− b is a floating-point number, so that RN (a− b) = a− b.

Lemma 5

Let a and b be FP numbers, and let s = RN (a+ b). If s 6= 0 then

s ≥ max

{
1

2
ulp (a),

1

2
ulp (b)

}
.

10 / 18

Sketch of the proof

W.l.o.g. |xh| ≥ |y|; xh positive; 1 ≤ xh ≤ 2− 2u.

[Case1:] If −xh ≤ y ≤ −xh/2: from Sterbenz Lemma sh = xh + y and s` = 0.
From Lemma 5 |sh| ≥ 1

2
ulp (xh), so |sh| ≥ |x`|.

Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that
zh + z` = sh + v = x+ y exactly.

[Case2:] If −xh/2 < y ≤ xh, then 1
2
≤ xh

2
< xh + y ≤ 2xh, so that sh ≥ 1/2.

One can prove that |x` + y`| ≤ 3u (two cases), so |v| ≤ 3u, s.t. sh > |v|: we can use
Algorithm Fast2Sum at line 3 of the algorithm.

[Case2a:] If xh + y ≤ 2 then |s`| ≤ u, so that |x` + s`| ≤ 2u, hence,
v = x` + s` + ε, with |ε| ≤ u2.
Therefore zh + z` = sh + v = x+ y + ε and the relative error

ε

|x+ y| ≤
ε

1
2
− u
≤ 2u2

1− 2u
.

11 / 18

Sketch of the proof

W.l.o.g. |xh| ≥ |y|; xh positive; 1 ≤ xh ≤ 2− 2u.

[Case1:] If −xh ≤ y ≤ −xh/2: from Sterbenz Lemma sh = xh + y and s` = 0.
From Lemma 5 |sh| ≥ 1

2
ulp (xh), so |sh| ≥ |x`|.

Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that
zh + z` = sh + v = x+ y exactly.

[Case2:] If −xh/2 < y ≤ xh, then 1
2
≤ xh

2
< xh + y ≤ 2xh, so that sh ≥ 1/2.

One can prove that |x` + y`| ≤ 3u (two cases), so |v| ≤ 3u, s.t. sh > |v|: we can use
Algorithm Fast2Sum at line 3 of the algorithm.

[Case2a:] If xh + y ≤ 2 then |s`| ≤ u, so that |x` + s`| ≤ 2u, hence,
v = x` + s` + ε, with |ε| ≤ u2.
Therefore zh + z` = sh + v = x+ y + ε and the relative error

ε

|x+ y| ≤
ε

1
2
− u
≤ 2u2

1− 2u
.

11 / 18

Sketch of the proof

W.l.o.g. |xh| ≥ |y|; xh positive; 1 ≤ xh ≤ 2− 2u.

[Case1:] If −xh ≤ y ≤ −xh/2: from Sterbenz Lemma sh = xh + y and s` = 0.
From Lemma 5 |sh| ≥ 1

2
ulp (xh), so |sh| ≥ |x`|.

Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that
zh + z` = sh + v = x+ y exactly.

[Case2:] If −xh/2 < y ≤ xh, then 1
2
≤ xh

2
< xh + y ≤ 2xh, so that sh ≥ 1/2.

One can prove that |x` + y`| ≤ 3u (two cases), so |v| ≤ 3u, s.t. sh > |v|: we can use
Algorithm Fast2Sum at line 3 of the algorithm.

[Case2a:] If xh + y ≤ 2 then |s`| ≤ u, so that |x` + s`| ≤ 2u, hence,
v = x` + s` + ε, with |ε| ≤ u2.
Therefore zh + z` = sh + v = x+ y + ε and the relative error

ε

|x+ y| ≤
ε

1
2
− u
≤ 2u2

1− 2u
.

11 / 18

Sketch of the proof

W.l.o.g. |xh| ≥ |y|; xh positive; 1 ≤ xh ≤ 2− 2u.

[Case1:] If −xh ≤ y ≤ −xh/2: from Sterbenz Lemma sh = xh + y and s` = 0.
From Lemma 5 |sh| ≥ 1

2
ulp (xh), so |sh| ≥ |x`|.

Hence we can use Algorithm Fast2Sum at line 3 of the algorithm, so that
zh + z` = sh + v = x+ y exactly.

[Case2:] If −xh/2 < y ≤ xh, then 1
2
≤ xh

2
< xh + y ≤ 2xh, so that sh ≥ 1/2.

One can prove that |x` + y`| ≤ 3u (two cases), so |v| ≤ 3u, s.t. sh > |v|: we can use
Algorithm Fast2Sum at line 3 of the algorithm.

[Case2a:] If xh + y ≤ 2 then |s`| ≤ u, so that |x` + s`| ≤ 2u, hence,
v = x` + s` + ε, with |ε| ≤ u2.
Therefore zh + z` = sh + v = x+ y + ε and the relative error

ε

|x+ y| ≤
ε

1
2
− u
≤ 2u2

1− 2u
.

11 / 18

Addition: AccurateDWPlusDW(xh, x`, yh, y`)

Algorithm 5

1: (sh, s`)← 2Sum(xh, yh)
2: (th, t`)← 2Sum(x`, y`)
3: c← RN (s` + th)
4: (vh, v`)← Fast2Sum(sh, c)
5: w ← RN (t` + v`)
6: (zh, z`)← Fast2Sum(vh, w)
7: return (zh, z`)

– previously published relative error bound [Li.et.al02]: 2 · 2−2p;

– FALSE, showed by the counterexample:

xh = 2p − 1, x` = −(2p − 1) · 2−p−1,

yh = −(2p − 5)/2, y` = −(2p − 1) · 2−p−3,

which leads to a relative error asymptotically equivalent to 2.25× 2−2p;
– rigorous proven error bound less than

3 · 2−2p + 13 · 2−3p,

as soon as p ≥ 6;
– sloppy version available, but less accurate.

12 / 18

Addition: AccurateDWPlusDW(xh, x`, yh, y`)

Algorithm 5

1: (sh, s`)← 2Sum(xh, yh)
2: (th, t`)← 2Sum(x`, y`)
3: c← RN (s` + th)
4: (vh, v`)← Fast2Sum(sh, c)
5: w ← RN (t` + v`)
6: (zh, z`)← Fast2Sum(vh, w)
7: return (zh, z`)

– previously published relative error bound [Li.et.al02]: 2 · 2−2p;
– FALSE, showed by the counterexample:

xh = 2p − 1, x` = −(2p − 1) · 2−p−1,

yh = −(2p − 5)/2, y` = −(2p − 1) · 2−p−3,

which leads to a relative error asymptotically equivalent to 2.25× 2−2p;

– rigorous proven error bound less than

3 · 2−2p + 13 · 2−3p,

as soon as p ≥ 6;
– sloppy version available, but less accurate.

12 / 18

Addition: AccurateDWPlusDW(xh, x`, yh, y`)

Algorithm 5

1: (sh, s`)← 2Sum(xh, yh)
2: (th, t`)← 2Sum(x`, y`)
3: c← RN (s` + th)
4: (vh, v`)← Fast2Sum(sh, c)
5: w ← RN (t` + v`)
6: (zh, z`)← Fast2Sum(vh, w)
7: return (zh, z`)

– previously published relative error bound [Li.et.al02]: 2 · 2−2p;
– FALSE, showed by the counterexample:

xh = 2p − 1, x` = −(2p − 1) · 2−p−1,

yh = −(2p − 5)/2, y` = −(2p − 1) · 2−p−3,

which leads to a relative error asymptotically equivalent to 2.25× 2−2p;
– rigorous proven error bound less than

3 · 2−2p + 13 · 2−3p,

as soon as p ≥ 6;
– sloppy version available, but less accurate.

12 / 18

Multiplication: DWTimesFP(xh, x`, y)

Algorithm 6

1: (ch, c`1)← Fast2Mult(xh, y)
2: c`2 ← RN (x` · y)
3: c`3 ← RN (c`1 + c`2)
4: (zh, z`)← Fast2Sum(ch, c`3)
5: return (zh, z`)

– implemented in Briggs and Bailey’s libraries;
– no previously published error bound;
– we proved that if p ≥ 3 the relative error is less than

3 · 2−2p;

– speed and accuracy can be improved if an FMA instruction is available (merging
lines 2 and 3).

13 / 18

Multiplication: DWTimesDW(xh, x`, yh, y`)

Algorithm 7

1: (ch, c`1)← Fast2Mult(xh, yh)
2: t`1 ← RN (xh · y`)
3: t`2 ← RN (x` · yh)
4: c`2 ← RN (t`1 + t`2)
5: c`3 ← RN (c`1 + c`2)
6: (zh, z`)← Fast2Sum(ch, c`3)
7: return (zh, z`)

– suggested by Dekker and implemented in Briggs and Bailey’s libraries;
– Dekker proved a relative error bound of 11 · 2−2p;
– we improved it, proving that if p ≥ 4 the relative error is less than

7 · 2−2p;

– speed and accuracy can be improved if an FMA instruction is available.

14 / 18

Division: DWDivFP1(xh, x`, y)

Algorithm 8

1: th ← RN (xh/y)
2: (πh, π`)← Fast2Mult(th, y)
3: (δh, δ

′)← 2Sum(xh,−πh)
4: δ′′ ← RN (x` − π`)
5: δ` ← RN (δ′ + δ′′)
6: δ ← RN (δh + δ`)
7: t` ← RN (δ/y)
8: (zh, z`)← Fast2Sum(th, t`)
9: return (zh, z`)

– algorithm suggested by Bailey;
– previously known error bound [Li.et.al02] of 4 · 2−2p;

– Improvement: we showed that the addition in line 3 is always exact.

=⇒ new algorithm

15 / 18

Division: DWDivFP1(xh, x`, y)

Algorithm 8

1: th ← RN (xh/y)
2: (πh, π`)← Fast2Mult(th, y)
3: (δh, δ

′)← 2Sum(xh,−πh)
4: δ′′ ← RN (x` − π`)
5: δ` ← RN (δ′ + δ′′)
6: δ ← RN (δh + δ`)
7: t` ← RN (δ/y)
8: (zh, z`)← Fast2Sum(th, t`)
9: return (zh, z`)

– algorithm suggested by Bailey;
– previously known error bound [Li.et.al02] of 4 · 2−2p;
– Improvement: we showed that the addition in line 3 is always exact.

=⇒ new algorithm

15 / 18

Division: DWDivFP2(xh, x`, y)

Algorithm 9

1: th ← RN (xh/y)
2: (πh, π`)← Fast2Mult(th, y)
3: δh ← RN (xh − πh)
4: δ` ← RN (x` − π`)
5: δ ← RN (δh + δ`)
6: t` ← RN (δ/y)
7: (zh, z`)← Fast2Sum(th, t`)
8: return (zh, z`)

– less FP operations, but mathematically equivalent;
– slightly improved error bound:

7

2
· 2−2p,

as soon as p ≥ 4.

16 / 18

Overview

Algorithm
Previously
known
bound

Our bound

Largest
relative error
found in

experiments

] of FP
ops

DWPlusFP ? 2u2 + 5u3 2u2 − 6u3 10
SloppyDWPlusDW N/A N/A 1 11
AccurateDWPlusDW 2u2 (wrong) 3u2 + 13u3 2.25u2 20
DWTimesFP1 4u2 2u2 1.5u2 10
DWTimesFP2 ? 3u2 2.517u2 7
DWTimesFP3 (fma) N/A 2u2 1.984u2 6
DWTimesDW1 11u2 7u2 4.9916u2 9
DWTimesDW2 (fma) N/A 5u2 3.936u2 9
DWDivFP1* 4u2 3.5u2 2.95u2 16
DWDivFP2* N/A 3.5u2 2.95u2 10
DWDivDW1* ? 15u2 + 56u3 8.465u2 24
DWDivDW2* N/A 15u2 + 56u3 8.465u2 18
DWDivDW3 (fma) N/A 9.8u2 5.922u2 31

17 / 18

Conclusions

– many similar algorithms with small differences;

– no correctness proofs and error bounds;

– need to clean up the literature and implementation;

+ we looked at 13 algorithms, both old and new;

+ we compared them and provided correctness proofs and error bounds;

+ code available online at: http://homepages.laas.fr/mmjoldes/campary/.

AMPAR
CudA Multiple Precision ARithmetic librarY

Tight and rigorous error bounds for basic building blocks of double-word arithmetic. Submitted to ACM
TOMS journal. hal.archives-ouvertes.fr/hal-01351529

18 / 18

hal.archives-ouvertes.fr/hal-01351529

Conclusions

– many similar algorithms with small differences;

– no correctness proofs and error bounds;

– need to clean up the literature and implementation;

+ we looked at 13 algorithms, both old and new;

+ we compared them and provided correctness proofs and error bounds;

+ code available online at: http://homepages.laas.fr/mmjoldes/campary/.

AMPAR
CudA Multiple Precision ARithmetic librarY

Tight and rigorous error bounds for basic building blocks of double-word arithmetic. Submitted to ACM
TOMS journal. hal.archives-ouvertes.fr/hal-01351529

18 / 18

hal.archives-ouvertes.fr/hal-01351529

